The paper analyzes losses and the loss generation mechanisms in a low-pressure turbine (LPT) cascade by proper orthogonal decomposition (POD) applied to measurements. Total pressure probes and time-resolved particle image velocimetry (TR-PIV) are used to determine the flow field and performance of the blade with steady and unsteady inflow conditions varying the flow incidence. The total pressure loss coefficient is computed by traversing two Kiel probes upstream and downstream of the cascade simultaneously. This procedure allows a very accurate estimation of the total pressure loss coefficient also in the potential flow region affected by incoming wake migration. The TR-PIV investigation concentrates on the aft portion of the suction side boundary layer downstream of peak suction. In this adverse pressure gradient region, the interaction between the wake and the boundary layer is the strongest, and it leads to the largest deviation from a steady loss mechanism. POD applied to this portion of the domain provides a statistical representation of the flow oscillations by splitting the effects induced by the different dynamics. The paper also describes how POD can dissect the loss generation mechanisms by separating the contributions to the Reynolds stress tensor from the different modes. The steady condition loss generation, driven by boundary layer streaks and separation, is augmented in the presence of incoming wakes by the wake–boundary layer interaction and by the wake dilation mechanism. Wake migration losses have been found to be almost insensitive to incidence variation between nominal and negative (up to −9 deg) while at positive incidence, the losses have a steep increase due to the alteration of the wake path induced by the different loading distribution.

References

References
1.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.
2.
Nagabhushana Rao
,
V.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
3.
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part II: Blade-Wake Interaction
,”
ASME J. Turbomach.
,
135
(1), p.
011011
.
4.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
5.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
6.
Gompertz
,
K. A.
, and
Bons
,
J. P.
,
2011
, “
Combined Unsteady Wakes and Active Flow Control on a Low-Pressure Turbine Airfoil
,”
AIAA J. Propul. Power
,
27
(
5
), pp.
990
1000
.
7.
Praisner
,
T.
,
Clark
,
J.
,
Nash
,
T.
,
Rice
,
M.
, and
Grover
,
E.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME
Paper No. GT2006-90666.
8.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
9.
Simoni
,
D.
,
Berrino
,
M.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade Under Steady and Unsteady Incoming Flow Conditions
,”
ASME J. Turbomach.
,
137
(
7
), p.
071009
.
10.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
11.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluid Eng.
,
130
(
6
), p.
061103
.
12.
Lengani
,
D.
, and
Simoni
,
D.
,
2015
, “
Recognition of Coherent Structures in the Boundary Layer of a Low-Pressure-Turbine Blade for Different Free-Stream Turbulence Intensity Levels
,”
Int. J. Heat Fluid Flow
,
54
, pp.
1
13
.
13.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
57
81
.
14.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2016
, “
Turbulence Production, Dissipation and Length Scales in Laminar Separation Bubbles
,”
11th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
, Sicily, Italy, Sept. 21–23.
15.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Analysis of the Reynolds Stress Component Production in a Laminar Separation Bubble
,”
Int. J. Heat Fluid Flow
,
64
, pp.
112
119
.
16.
Cumpsty
,
N.
, and
Horlock
,
J.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
17.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2014
, “
POD Analysis of the Unsteady Behavior of a Laminar Separation Bubble
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
70
79
.
18.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
19.
Berrino
,
M.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2016
, “
Aerodynamic Loading Distribution Effects on Off-Design Performance of Highly Loaded LP Turbine Cascades Under Steady and Unsteady Incoming Flows
,”
ASME
Paper No. GT2016-57580.
20.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
21.
Yarusevych
,
S.
,
Kawall
,
J. G.
, and
Sullivan
,
P. E.
,
2008
, “
Separated-Shear-Layer Development on an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
46
(
12
), pp.
3060
3069
.
22.
Legrand
,
M.
,
Nogueira
,
J.
, and
Lecuona
,
A.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data—Part I: Mathematic Fundamentals
,”
Exp. Fluids
,
51
(
4
), pp.
1047
1055
.
23.
De Wall
,
A. G.
,
Kadambi
,
J. R.
, and
Adamczyk
,
J. J.
,
2000
, “
A Transport Model for the Deterministic Stresses Associated With Turbomachinery Blade Row Interactions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
593
603
.
24.
Zhang
,
Q.
, and
Ligrani
,
P. M.
,
2006
, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
128
(
3
), pp.
536
546
.
25.
Stotz
,
S.
,
Guendogdu
,
Y.
, and
Niehuis
,
R.
,
2017
, “
Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
,”
ASME J. Turbomach.
,
139
(5), p. 051007.
You do not currently have access to this content.