Comparison of heat transfer performance of a nonaxisymmetric contoured endwall to a planar baseline endwall in the presence of leakage flow through stator–rotor rim seal interface and mateface gap is reported in this paper. Heat transfer experiments were performed on a high turning turbine airfoil passage at Virginia Tech's transonic blow down cascade facility under design conditions for two leakage flow configurations—(1) mateface blowing only, (2) simultaneous coolant injection from the upstream slot and mateface gap. Coolant to mainstream mass flow ratios (MFRs) were 0.35% for mateface blowing only, whereas for combination blowing, a 1.0% MFR was chosen from upstream slot and 0.35% MFR from mateface. A common source of coolant supply to the upstream slot and mateface plenum made sure the coolant temperatures were identical at both upstream slot and mateface gap at the injection location. The contoured endwall geometry was generated to minimize secondary aerodynamic losses. Transient infrared thermography technique was used to measure endwall surface temperature and a linear regression method was developed for simultaneous calculation of heat transfer coefficient (HTC) and adiabatic cooling effectiveness, assuming a one-dimensional (1D) semi-infinite transient conduction. Results indicate reduction in local hot spot regions near suction side as well as area averaged HTC using the contoured endwall compared to baseline endwall for all coolant blowing cases. Contoured geometry also shows better coolant coverage further along the passage. Detailed interpretation of the heat transfer results along with near endwall flow physics has also been discussed.

References

1.
Brittingham
,
R. A.
,
Benjamin
,
E. D.
,
Jacob
,
C. P.
, II
, and
Bielek
,
C. A.
, 2004, “
Airfoil Shape for a Turbine Bucket
,” General Electric Company, Boston, MA, U.S. Patent No.
6,779,980
.
2.
Siemens Energy
, 2017, “SGT5-4000F Heavy-Duty Gas Turbine (50 Hz),” Siemens AG, Munich, Germany, accessed Sept. 21, 2017, https://www.siemens.com/global/en/home/products/energy/power-generation/gas-turbines/sgt5-4000f.html#!/
3.
Roy
,
A.
,
Blot
,
D.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2013
, “
Effect of Endwall Contouring in Presence of Upstream Leakage Flow in a Transonic Turbine Blade Passage: Heat Transfer Measurements
,”
AIAA
Paper No. 2013-3744.
4.
Yamao
,
H.
,
Aoki
,
K.
,
Takeishi
,
K.
, and
Takeda
,
K.
,
1987
, “
An Experimental Study for Endwall Cooling Design of Turbine Vanes
,”
Tokyo International Gas Turbine Congress and Exhibition
, Tokyo, Japan, Oct. 26–30, Paper No. IGTC-67.
5.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
(
4
), pp.
651
658
.
6.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME
Paper No. GT2005-68340.
7.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME
Paper No. HT2005-72573.
8.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2006
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
9.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2006
, “
Adiabatic Effectiveness Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME
Paper No. GT2006-90576.
10.
Ranson
,
W. W.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
,
127
(
3
), pp.
609
618
.
11.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2007
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
,
129
(
2
), pp.
303
310
.
12.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps
,”
ASME
Paper No. GT2006-90839.
13.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
14.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
15.
Hada
,
S.
, and
Thole
,
K. A.
,
2006
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME
Paper No. GT2006-91067.
16.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041002
.
17.
Benoit
,
L.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2012
, “
High Resolution Heat Transfer Measurement on Flat and Contoured Endwalls in a Linear Cascade
,”
ASME
Paper No. GT2012-69737.
18.
Winkler
,
S.
,
Haase
,
K.
,
Janosch
,
B.
, and
Weigand
,
B.
,
2014
, “
Turbine Endwall Contouring for the Reduction of Endwall Heat Transfer Using the Ice Formation Method Along With Computational Fluid Dynamics
,”
ASME
Paper No. GT2014-25655.
19.
Panchal
,
K. V.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Part 2—Heat Transfer Performance
,”
ASME
Paper No. GT2012-68405.
20.
Roy
,
A.
,
Blot
,
D.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2013
, “
Effect of Upstream Purge Slot on a Transonic Turbine Blade Passage: Part 2—Heat Transfer Performance
,”
ASME
Paper No. GT2013-94581.
21.
Panchal
,
K. V.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Brown
,
B.
, and
Malandra
,
A.
,
2011
, “
Investigation of Effect of Endwall Contouring Methods on a Transonic Turbine Blade Passage
,”
ASME
Paper No. GT2011-45192.
22.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,”
ASME
Paper No. 2000-GT-0202.
23.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
24.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(1), pp.
66
72
.
You do not currently have access to this content.