The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the single stage centrifugal compressor (SSCC) facility at Purdue University and include speed transients from subidle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge (LE) and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one-third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.

References

References
1.
Greitzer
,
E. M.
,
1980
, “
Review-Axial Compressor Stall Phenomena
,”
ASME J. Fluids Eng.
,
102
(
2
), pp.
134
151
.
2.
Tan
,
C. S.
,
Day
,
I.
, and
Morris
,
S.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.
3.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
4.
Benser
,
W.
, and
Moses
,
J.
,
1945
, “
An Investigation of Backflow Phenomenon in Centrifugal Compressors
,” National Advisory Committee for Aeronautics, Cleveland, OH, Technical Report No.
NACA-TR-806
.
5.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME
Paper No. 53-A-65.
6.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Fluids Eng.
,
86
(
4
), pp.
750
758
.
7.
Frigne
,
P.
, and
Van den Braembussche
,
R.
,
1985
, “
A Theoretical Model for Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
107
(2), pp. 507–513.
8.
Frigne
,
P.
, and
Van den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
(2), pp. 468–474.
9.
Lawless
,
P.
, and
Fleeter
,
S.
,
1993
, “
Rotating Stall Acoustic Signature in a Low Speed Centrifugal Compressor: Part II—Vane Diffuser
,”
ASME
Paper No. 93-GT-254.
10.
Lawless
,
P.
, and
Fleeter
,
S.
,
1995
, “
Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor: Part I—Vaneless Diffuser
,”
ASME J. Turbomach.
,
117
(1), pp.
87
96
.
11.
Oakes
,
W.
,
Shook
,
P.
,
McGuire
,
R.
,
Fleeter
,
S.
, and
Fagan
,
J.
,
1997
, “
Aerodynamic Performance and Instability Initiation of a High Speed Research Centrifugal Compressor
,”
Int. J. Turbo Jet Engines
,
14
(4), pp.
187
199
.
12.
Oakes
,
W.
,
Lawless
,
P.
, and
Fleeter
,
S.
,
1999
, “
Instability Pathology of a High Speed Centrifugal Compressor
,”
ASME
Paper No. 99-GT-415.
13.
Oakes
,
W.
,
Lawless
,
P.
,
Fagan
,
J.
, and
Fleeter
,
S.
,
2002
, “
High-Speed Centrifugal Compressor Surge Initiation Characterization
,”
J. Propul. Power
,
18
(
5
), pp.
1012
1018
.
14.
Spakovszky
,
Z.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
15.
Zheng
,
X.
, and
Liu
,
A.
,
2016
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p.
081007
.
16.
Wernet
,
M.
,
Bright
,
M.
, and
Skoch
,
G.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
17.
Trebinjac
,
I.
,
Bulot
,
N.
,
Ottavy
,
X.
, and
Buffaz
,
N.
,
2011
, “
Surge Inception in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2011-45116.
18.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trebinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin-Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
19.
Guillou
,
E.
,
Gancedo
,
M.
, and
Gutmark
,
E.
,
2016
, “
Experimental Investigation of Flow Instability in a Turbocharger Ported Shroud Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061002
.
20.
Amann
,
C. A.
,
Nordenson
,
G. E.
, and
Skellenger
,
G. D.
,
1975
, “
Casing Modification for Increasing the Surge Margin of a Centrifugal Compressor in an Automotive Turbine Engine
,”
ASME J. Eng. Power
,
97
(
3
) pp.
329
335
.
21.
Lawless
,
P.
, and
Fleeter
,
S.
,
1991
, “
Active Unsteady Aerodynamic Suppression of Rotating Stall in an Incompressible Flow Centrifugal Compressor With Vaned Diffuser
,”
AIAA
Paper No. AIAA-91-1898.
22.
Gysling
,
D.
,
Dugundji
,
J.
,
Greitzer
,
E.
, and
Epstein
,
A.
,
1991
, “
Dynamic Control of Centrifugal Compressor Surge Using Tailored Structures
,”
ASME J. Turbomach.
,
113
(
4
), pp.
710
722
.
23.
Pinsley
,
J.
,
Guenette
,
G.
,
Epstein
,
A.
, and
Greitzer
,
E.
,
1991
, “
Active Stabilization of Centrifugal Compressor Surge
,”
ASME J. Turbomach.
,
113
(
4
), pp.
723
732
.
24.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.
25.
Skoch
,
G. J.
,
2005
, “
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
,”
ASME J. Turbomach.
,
127
(
1
), pp.
107
117
.
26.
Spakovszky
,
Z.
, and
Roduner
,
C.
,
2009
, “
Spike and Moda Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.
27.
Oakes
,
W.
,
Lawless
,
P.
, and
Fleeter
,
S.
,
2004
, “
High-Speed Centrifugal Compressor Instabilities during Speed Transients
,”
J. Aerosp. Eng.
,
17
(
3
), pp.
106
112
.
28.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2009
,
Diesel Engine Transient Operation
,
Springer
,
London
.
29.
Lou
,
F.
,
Harrison
,
H. M.
,
Fabian
,
J. C.
,
Key
,
N. L.
,
James
,
D. K.
, and
Srivastava
,
R.
,
2016
, “
Development of a Centrifugal Compressor Facility for Performance and Aeromechanics Research
,”
ASME
Paper No. GT2016-56188.
30.
Rodgers
,
C.
,
1964
, “
Typical Performance Characteristics of Gas Turbine Radial Compressors
,”
ASME J. Eng. Power
,
86
(
2
), pp.
161
170
.
31.
Herbert
,
M. V.
, and
Came
,
P. M.
,
1980
, “
Design and Experimental Performance of Some High Pressure Ratio Centrifugal Compressors
,”
Advisory Group for Aerospace Research and Development Conference
, Brussels, Belgium, May 7–9, Paper No. 282.
32.
Came
,
P. M.
, and
Robinson
,
C. J.
,
1998
, “
Centrifugal Compressor Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
139
155
.
You do not currently have access to this content.