Temporal variation of components' performance is becoming a crucial parameter in turbomachinery design process. The main physical mechanism driving the time-dependent behavior is the unsteady bladerow interaction as stator–rotor relative motion due to rotating frame of reference. However, so far unsteady effects have been ignored in design processes in common engineering practice. In fact, steady approach has been generally employed for computational fluid dynamics (CFD)-based turbomachinery design. Moreover, conventional blade design has been based on single operating point considerations. Taking into account multiple time-dependent phenomena, as the unsteady performance parameters variation, might be beneficial in making a further improvement on component performance. In quantitative terms, first of all it is important to investigate the relative effect of unsteady variation, compared to the standard steady approach, and to create a capability for calculating temporal sensitivity variation, while keeping a reasonable computing cost. This work investigates the unsteady variation of turbomachinery performance on quasi-three-dimensional (3D) geometries: single-stage turbine and single-stage compressor. Steady flow solutions using mixing plane method are compared to the unsteady flow solutions using a direct unsteady calculation, while assessing the introduction of the space–time gradient (STG) method. The results clearly show how the unsteady variation is a non-negligible effect in performance prediction and blade design. Then, a new computational technique to quantify temporal sensitivity variation is introduced, based on the STG method, with an extension to adjoint-based sensitivity analysis. The relation between time and space in multipassage-multirow domain, the fundamental assumption of the STG method, is applied within the adjoint operator formulation, which gives unsteady sensitivity information on a broad range of design parameters, at the cost of a single computation. Finally, the unsteady sensitivities are compared to the ones resulting from steady solution in the two quasi-3D cases. This work introduces a coherent and effective mathematical formulation for accounting deterministic unsteadiness on component design, while reducing computational cost compared to standard unsteady optimization techniques.

References

References
1.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
2.
Horlock
,
J. H.
,
1970
, Unsteady Flow in Turbomachines (von Karman Institute for Fluid Dynamics Unsteady Flows in Axial Flow Compressors), von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
3.
Greitzer
,
E. M.
,
1984
, Introduction to Unsteady Flow in Turbomachines (von Karman Institute for Fluid Dynamics Unsteady Flow in Turbomachines), Vol. 1, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
4.
Giles
,
M. B.
,
1989
, Numerical Methods for Unsteady Turbomachinery Flow (von Karman Institute for Numerical Methods for Flows in Turbomachinery), Vol. 2, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
5.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows—Part 1: Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.
6.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows—Part 2: LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.
7.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
8.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
9.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
10.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.
11.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
12.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.
13.
He
,
L.
,
1992
, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
,
30
(
11
), pp.
2730
2735
.
14.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
15.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
16.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
17.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
18.
Yi
,
J.
, and
He
,
L.
,
2015
, “
Space–Time Gradient Method for Unsteady Bladerow Interaction—Part I: Basic Methodology and Verification
,”
ASME J. Turbomach.
,
137
(
11
), p.
111008
.
19.
He
,
L.
,
Yi
,
J.
,
Adami
,
P.
, and
Capone
,
L.
,
2015
, “
Space–Time Gradient Method for Unsteady Bladerow Interaction—Part II: Further Validation, Clocking, and Multidisturbance Effect
,”
ASME J. Turbomach.
,
137
(
12
), p.
121004
.
20.
Li
,
H. D.
, and
He
,
L.
,
2003
, “
Blade Count and Clocking Effects on Three-Bladerow Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
632
640
.
21.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
22.
Nadarajah
,
S. K.
, and
Jameson
,
A.
,
2007
, “
Optimum Shape Design for Unsteady Flows With Time-Accurate Continuous and Discrete Adjoint Method
,”
AIAA J.
,
45
(
7
), pp.
1478
1491
.
23.
Wang
,
Q.
, and
Gao
,
J.-H.
,
2013
, “
The Drag-Adjoint Field of a Circular Cylinder Wake at Reynolds Numbers 20, 100 and 500
,”
J. Fluid Mech.
,
730
, pp.
145
161
.
24.
Blonigan
,
P.
,
Chen
,
R.
,
Wang
,
Q.
, and
Larsson
,
J.
,
2012
, “
Towards Adjoint Sensitivity Analysis of Statistics in Turbulent Flow Simulation
,” Summer Program, Center for Turbulence Research, P. Moin, and J. Nichols, eds., Center for Turbulence Research, Stanford, CA, pp. 229–239.
25.
Economon
,
T. D.
,
Palacios
,
F.
, and
Alonso
,
J. J.
,
2013
, “
A Viscous Continuous Adjoint Approach for the Design of Rotating Engineering Applications
,”
AIAA
Paper No. 2013-2580.
26.
Talnikar
,
C.
,
Wang
,
Q.
, and
Laskowski
,
G. M.
,
2016
, “
Unsteady Adjoint of Pressure Loss for a Fundamental Transonic Turbine Vane
,”
ASME J. Turbomach.
,
139
(
3
), p.
031001
.
27.
He
,
L.
, and
Wang
,
D. X.
,
2010
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
28.
Thomas
,
J.
,
Hall
,
K.
, and
Dowell
,
E.
,
2003
, “
A Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities
,”
AIAA
Paper No. 2003-41.
29.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
An Efficient Unsteady Adjoint Optimization System for Multistage Turbomachinery
,”
ASME J. Turbomach.
,
139
(
1
), p.
011003
.
30.
Buffum
,
D. H.
,
1995
, “
Blade Row Interaction Effects on Flutter and Forced Response
,”
J. Propul. Power
,
11
(
2
), pp.
205
212
.
31.
Jiang
,
Y.
,
He
,
L.
,
Capone
,
L.
, and
Romero
,
E.
,
2016
, “
Investigation of Steady and Unsteady Film-Cooling Using Immersed Mesh Blocks With New Conservative Interface Scheme
,”
ASME
Paper No. GT2016-57363.
32.
He
,
L.
, and
Yi
,
J.
,
2017
, “
Two-Scale Methodology for URANS/Large Eddy Simulation Solutions of Unsteady Turbomachinery Flows
,”
ASME J. Turbomach
,
139
(
10
), p.
101012
.
33.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 1991-1596.https://doi.org/10.2514/6.1991-1596
34.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Software
,
29
(
3
), pp.
245
262
.
35.
Moinier
,
P.
,
M-uacute
,
J.-D.
,
Ller
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
36.
Giles
,
M. B.
,
Duta
,
M. C.
,
Muller
,
J.-D.
, and
Pierce
,
N. A.
,
2003
, “
Algorithm Developments for Discrete Adjoint Methods
,”
AIAA J.
,
41
(
2
), pp.
198
205
.
37.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
You do not currently have access to this content.