This paper will compare two approaches of sensitivity analysis, namely (i) the adjoint method which is used to obtain an initial estimate of the geometric sensitivity of the gas-washed surfaces to aerodynamic quantities of interest and (ii) a Monte Carlo type simulation with an efficient sampling strategy. For both approaches, the geometry is parameterized using a modified NACA parameterization. First, the sensitivity of those parameters is calculated using the linear (first-order) adjoint model. Since the effort of the adjoint computational fluid dynamics (CFD) solution is comparable to that of the initial flow CFD solution and the sensitivity calculation is simply a postprocessing step, this approach yields fast results. However, it relies on a linear model which may not be adequate to describe the relationship between relevant aerodynamic quantities and actual geometric shape variations for the derived amplitudes of shape variations. Second, in order to better capture nonlinear and interaction effects, a Monte Carlo type simulation with an efficient sampling strategy is used to carry out the sensitivity analysis. The sensitivities are expressed by means of the coefficient of importance (CoI), which is calculated based on modified polynomial regression and therefore able to describe relationships of higher order. The methods are applied to a typical high-pressure compressor (HPC) stage. The impact of a variable rotor geometry is calculated by three-dimensional (3D) CFD simulations using a steady Reynolds-averaged Navier–Stokes model. The geometric variability of the rotor is based on the analysis of a set of 400 blades which have been measured using high-precision 3D optical measurement techniques.

References

References
1.
Jameson
,
A.
,
2003
,
Aerodynamic Shape Optimization Using the Adjoint Method
(Lecture Series),
Von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
2.
Giebmanns
,
A.
,
Backhaus
,
J.
,
Frey
,
C.
, and
Schnell
,
R.
,
2013
, “
Compressor Leading Edge Sensitivities and Analysis With an Adjoint Flow Solver
,”
ASME
Paper No. GT2013-94427.
3.
Pini
,
M.
,
Persico
,
G.
,
Pasquale
,
D.
, and
Rebay
,
S.
,
2014
, “
Adjoint Method for Shape Optimization in Real-Gas Flow Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032604
.
4.
Walther
,
B.
, and
Nadarajah
,
S.
,
2012
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single-Stage Transonic Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021017
.
5.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids
,”
ASME J. Turbomach.
,
137
(
8
), p.
081006
.
6.
Garzon
, V
. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.
7.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484.
8.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032504.
9.
Lange
,
A.
,
Voigt
,
M.
,
Schrapp
,
H.
,
Johann
,
E.
,
Vogeler
,
K.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112601
.
10.
Kumar
,
A.
,
2006
, “
Robust Design Methodologies: Application to Compressor Blades
,”
Ph.D. thesis
, University of Southampton, Southampton, UK.https://eprints.soton.ac.uk/72037/
11.
Dow
,
E. A.
, and
Wang
,
Q.
,
2015
, “
The Implications of Tolerance Optimization on Compressor Blade Design
,”
ASME J. Turbomach.
,
137
(
10
), p.
101008
.
12.
Iooss
,
B.
, and
Lematre
,
P.
,
2014
, “
A Review on Global Sensitivity Analysis Methods
,” preprint
arXiv:1404.2405
.https://arxiv.org/abs/1404.2405
14.
Lange
,
A.
,
Vogeler
,
K.
,
Gmmer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
ASME
Paper No. GT2009-59937.
15.
Heinze
,
K.
,
2015
,
Probabilistische Untersuchung zum Einfluss von Fertigungsstreuungen auf die hochzyklische Ermdung von Verdichterschaufeln
,
TUDpress
,
Dresden, Germany
.
16.
Moinier
,
P.
,
Mller
,
J. D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
17.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
, Oxford University, Oxford, UK.http://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
18.
Moinier
,
P.
, and
Giles
,
M. B.
,
1998
, “
Preconditioned Euler and Navier–Stokes Calculations on Unstructured Meshes
,”
Numerical Methods for Fluid Dynamics VI
,
Oxford University
,
Oxford, UK
.
19.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flows With a Multigrid Method
,”
Ph.D. thesis
, Princeton University, Princeton, NJ.https://www.osti.gov/scitech/biblio/7029684
20.
Giles
,
M. B.
,
Duta
,
M. C.
,
Mller
,
J.-D.
, and
Pierce
,
N. A.
,
2003
, “
Algorithm Developments for Discrete Adjoint Methods
,”
AIAA J.
,
41
(
2
), pp.
198
205
.
21.
Ntanakas
,
G.
, and
Meyer
,
M.
,
2015
, “
The Unsteady Discrete Adjoint Method for Turbomachinery Applications
,”
International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
ISUAAAT
), Stockholm, Sweden, Sept. 8–11, pp.
1
8
.
22.
Nielsen
,
E. J.
, and
Park
,
M. A.
,
2006
, “
Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design
,”
AIAA J.
,
44
(
5
), pp.
948
953
.
23.
Campobasso
,
M. S.
,
Duta
,
M. C.
, and
Giles
,
M. B.
,
2003
, “
Adjoint Calculation of Sensitivities of Turbomachinery Objective Functions
,”
J. Propul. Power
,
19
(
4
), pp.
693
703
.
24.
Schmidt
,
R.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
Extension of Latin Hypercube Samples While Maintaining the Correlation Structure
,”
12th International Probabilistic Workshop
, Weimar, Germany, Nov. 5–8, pp. 297–314.http://docplayer.net/45534900-12-th-international-probabilistic-workshop.html
25.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
26.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
27.
Bucher
,
C.
,
2009
,
Computational Analysis of Randomness in Structural Mechanics
(Structures and Infrastructures Series), Vol.
3
,
CRC Press/Balkema
,
Leiden, The Netherlands
.
28.
Most
,
T.
, and
Will
,
J.
,
2011
, “
Sensitivity Analysis Using the Metamodel of Optimal Prognosis
,”
Weimar Optimization and Stochastic Days
, Weimar, Germany, Nov. 24–25, pp. 1–16.https://www.researchgate.net/publication/228532931_Sensitivity_analysis_using_the_Metamodel_of_Optimal_Prognosis
29.
Beschorner
,
A.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
Monte Carlo Cross-Validation for Response Surface Benchmark
,”
12th International Probabilistic Workshop
, Weimar, Germany, Nov. 5–8, pp. 43–54.https://tu-dresden.de/ing/maschinenwesen/ism/tfa/forschung/publikationen/2014/monte_carlo_cross_validation_for_response_surface_benchmark/document_view?set_language=en
30.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2008
, “
Computation of the Hessian Matrix in Aerodynamic Inverse Design Using Continuous Adjoint Formulations
,”
Comput. Fluids
,
37
(
8
), pp.
1029
1039
.
You do not currently have access to this content.