This paper presents an experimental investigation of the concept of using the combustor transition duct wall to shield the nozzle guide vane leading edge. The new vane is tested in a high-speed experimental facility, demonstrating the improved aerodynamic and thermal performance of the shielded vane. The new design is shown to have a lower average total pressure loss than the original vane, and the heat transfer on the vane surface is overall reduced. The peak heat transfer on the vane leading edge–endwall junction is moved further upstream, to a region that can be effectively cooled as shown in previously published numerical studies. Experimental results under engine-representative inlet conditions showed that the better performance of the shielded vane is maintained under a variety of inlet conditions.

References

1.
Mazzoni
,
C. M.
,
Rosic
,
B.
, and
Klostermeier
,
C.
,
2015
, “
Combustor Wall Axial Location Effects on First Vane Leading-Edge Cooling
,”
AIAA J. Propul. Power
,
31
(
4
), pp.
1094
1106
.
2.
Rosic
,
B.
,
Denton
,
J. D.
,
Horlock
,
J. H.
, and
Uchida
,
S.
,
2011
, “
Integrated Combustor and Vane Concept in Industrial Gas Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031005
.
3.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2014
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081503
.
4.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
5.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
6.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
(
1
), pp.
107
118
.
7.
Ames
,
F. E.
, and
Plesniak
,
M. W.
,
1997
, “
The Influence of Large-Scale, High-Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
,
119
(
2
), pp.
182
192
.
8.
Zhang
,
Q.
,
Sandberg
,
D.
, and
Ligrani
,
P. M.
,
2005
, “
Mach Number and Freestream Turbulence Effects on Turbine Vane Aerodynamic Losses
,”
J. Propul. Power
,
21
(
6
), pp.
988
996
.
9.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
,
2003
, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
221
231
.
10.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
11.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2001
, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
,
123
(
3
), pp.
510
518
.
12.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
133
141
.
13.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2004
, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomach.
,
126
(
2
), pp.
277
287
.
14.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.
15.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
16.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
17.
Miller
,
R. J.
, and
Denton
,
J. D.
,
2012
,
Loss Mechanisms in Turbomachines
,
Cambridge Turbomachinery Course
, University of Cambridge, Cambridge, UK, pp.
79
116
.
18.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
19.
Nealy
,
D. A.
,
Mihelc
,
M. S.
,
Hylton
,
L. D.
, and
Gladden
,
H. J.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
149
158
.
20.
Aslanidou
,
I.
,
Rosic
,
B.
,
Kanjirakkad
,
V.
, and
Uchida
,
S.
,
2013
, “
Leading Edge Shielding Concept in Gas Turbines With Can Combustors
,”
ASME J. Turbomach.
,
135
(
2
), pp.
021019
021027
.
21.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
22.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365831
23.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
24.
Aslanidou
,
I.
,
2015
, “
Combustor and Turbine Aerothermal Interactions in Gas Turbines With Can Combustors
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.https://ora.ox.ac.uk/objects/uuid:b1527fd0-8e54-4831-8625-32722141511e
25.
Corriveau
,
D.
, and
Sjolander
,
S. A.
,
2004
, “
Influence of Loading Distribution on the Performance of Transonic High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
2
), pp.
288
296
.
26.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
27.
Jacobi
,
S.
,
2013
, “
Influence of Lean Premixed Combustor Geometry on the First Turbine Vanes Aerothermal Performance
,” Master's thesis, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
You do not currently have access to this content.