A general issue in turbomachinery flow computations is how to capture and resolve two kinds of unsteadiness efficiently and accurately: (a) deterministic disturbances with temporal and spatial periodicities linked to blade count and rotational speed and (b) nondeterministic disturbances including turbulence and self-excited coherent patterns (e.g., vortex shedding, shear layer instabilities, etc.) with temporal and spatial wave lengths unrelated to blade count and rotational speed. In particular, the high cost of large eddy simulations (LES) is further compounded by the need to capture the deterministic unsteadiness of bladerow interactions in computational domains with large number of blade passages. This work addresses this challenge by developing a multiscale solution approach. The framework is based on an ensemble-averaging to split deterministic and nondeterministic disturbances. The two types of disturbances can be solved in suitably selected computational domains and solvers, respectively. The local fine mesh is used for nondeterministic turbulence eddies and vortex shedding, while the global coarse mesh is for deterministic unsteadiness. A key enabler is that the unsteady stress terms (UST) of the nondeterministic disturbances are obtained only in a small set of blade passages and propagated to the whole domain with many more passages by a block spectral mapping. This distinctive multiscale treatment makes it possible to achieve a high-resolution unsteady Reynolds-averaged Navier–Stokes (URANS)/LES solution in a multipassage/whole annulus domain very efficiently. The method description will be followed by test cases demonstrating the validity and potential of the proposed methodology.

References

References
1.
Denton
,
J. D.
,
1975
, “
A Time Marching Method for Two and Three Dimensional Blade to Blade Flows
,” ARC, London, R&M Report No.
3775
.
2.
Adamczyk
,
J. J.
,
1984
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-86869
.
3.
Hah
,
C.
,
1987
, “
Calculation of Three-Dimensional Viscous Flows in Turbomachinery With an Implicit Relaxation Method
,”
AIAA J. Propul. Power
,
3
(
5
), pp.
415
422
.
4.
Dawes
,
W. N.
,
1992
, “
Toward Improved Throughflow Capability: The Use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment
,”
ASME J. Turbomach.
,
114
(
1
), pp.
8
17
.
5.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
6.
He
,
L.
,
1993
, “
New Two-Grid Acceleration Method for Unsteady Navier–Stokes Calculations
,”
AIAA J. Propul. Power
,
9
(
2
), pp.
272
280
.
7.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.
8.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake Rotor Interaction
,”
AIAA J. Propul. Power
,
4
(
4
), pp.
356
362
.
9.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.
10.
Li
,
H. D.
, and
He
,
L.
,
2002
, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
285
292
.
11.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
12.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascade Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
13.
Li
,
H. D.
, and
He
,
L.
,
2005
, “
Toward Intra-Row Gap Optimization for One and Half Stage Transonic Compressor
,”
ASME J. Turbomach.
,
127
(
3
), pp.
589
598
.
14.
Ekici
,
K.
, and
Hall
,
K. C.
,
2007
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA J.
,
45
(
5
), pp.
1047
1057
.
15.
Gerolymos
,
G. A.
,
2013
, “
Filtered Chorochronic Interface as a Capacity for 3-D Unsteady Through Flow Analysis of Multistage Turbomachinery
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
100
117
.
16.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
17.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
18.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
19.
Mouret
,
G.
,
Gourdain
,
N.
, and
Castillon
,
L.
,
2016
, “
Adaptation of Phase-Lagged Boundary Conditions to Large Eddy Simulation in Turbomachinery Configurations
,”
ASME J. Turbomach.
,
138
(
4
), p.
041003
.
20.
Tucker
,
P. G.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2011
, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part I: Hierarchy and Example Simulation
,”
ASME J. Turbomach.
,
134
(
2
), p.
021023
.
21.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
22.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
, and
Michelassi
,
V.
,
2016
, “
Direct Numerical Simulations of High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
23.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: A Path From 2015 to 2035
,”
Philos. Trans. R. Soc. A.
,
372
(
2022
), p. 20130323.
24.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
25.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
AIAA
Paper No. 2003-0767.
26.
Rao
,
V. N.
,
Tucker
,
P. G.
,
Jefferson-Loveday
,
R. J.
, and
Coull
,
J. D.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
27.
Memory
,
C. L.
,
Chen
,
J. P.
, and
Bons
,
J. P.
,
2016
, “
Implicit Large Eddy Simulation of a Stalled Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
138
(
7
), p.
071008
.
28.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
,
2000
, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Visualization Sci.
,
3
(
1
), pp.
47
59
.
29.
Hou
,
T. Y.
,
Hu
,
X.
, and
Hussain
,
F.
,
2013
, “
Multiscale Modeling of Incompressible Turbulent Flows
,”
J. Comput. Phys.
,
232
(
1
), pp.
383
396
.
30.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2010
, “
Unsteady Conjugate Heat Transfer Modelling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
31.
He
,
L.
, and
Fadl
,
M.
,
2016
, “
Multi-Scale Time Integration for Transient Conjugate Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
887
904
.
32.
Yi
,
J.
, and
He
,
L.
,
2015
, “
Space–Time Gradient Method for Unsteady Bladerow Interaction—Part 1: Basic Methodology and Verification
,”
ASME J. Turbomach.
,
137
(
11
), p.
111008
.
33.
He
,
L.
,
Yi
,
J.
,
Adami
,
P.
, and
Capone
,
L.
,
2015
, “
Space–Time Gradient Method for Unsteady Bladerow Interaction—Part 2: Further Validation, Clocking and Multi-Disturbance Effect
,”
ASME J. Turbomach.
,
137
(
12
), p.
121004
.
34.
Adamczyk
,
J. J.
,
1999
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
35.
Ning
,
W.
, and
He
,
L.
,
2001
, “
Some Modelling Issues on Trailing Edge Vortex Shedding
,”
AIAA J.
,
39
(
5
), pp.
787
793
.
36.
He
,
L.
,
2013
, “
Block-Spectral Mapping for Multi-Scale Solution
,”
J. Comput. Phys.
,
250
, pp.
13
26
.
37.
Li
,
H. D.
, and
He
,
L.
,
2003
, “
Blade Count and Clocking Effects on Three-Bladerow Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
632
640
.
38.
He
,
L.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blade With Separation
,”
AIAA J.
,
46
(
6
), pp.
1299
1307
.
39.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
,
2004
, “
Interfacing Statistical Turbulence Closures With Large-Eddy Simulation
,”
AIAA J.
,
42
(
3
), pp.
485
492
.
40.
He
,
L.
,
2013
, “
Fourier Spectral Modelling for Multi-Scale Aerothermal Analysis
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
118
129
.
41.
Moinier
,
P.
,
Müller
,
J.-D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
42.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2003-38469.
43.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
44.
Sanger
,
N. L.
, and
Shreeve
,
R. P.
,
1986
, “
Comparison of Calculated and Experimental Cascade Performance for Controlled-Diffusion Compressor Stator Blading
,”
ASME J. Turbomach.
,
108
(
1
), pp.
42
50
.
45.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-Dimensional Blade Oscillation
,”
AIAA J. Propul. Power
,
20
(
1
), pp.
180
188
.
46.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
47.
He
,
L.
,
1998
, “
Unsteady Flow in Oscillating Turbine Cascade—Part 2: Computational Study
,”
ASME J. Turbomach.
,
120
(
2
), pp.
269
275
.
You do not currently have access to this content.