In the present paper, the influence of the presence of an inlet flow nonuniformity on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out with platform cooling, with coolant ejected through a slot located upstream of the leading edge. Cooling air is also ejected through a row of cylindrical holes located upstream of the slot, simulating a combustor cooling system. An obstruction was installed upstream of the cascade at variable tangential and axial position to generate a flow nonuniformity. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition. Aerothermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Results show a relevant negative impact of inlet flow nonuniformity on the cooled cascade aerodynamic and thermal performance. Higher film cooling effectiveness and lower aerodynamic losses are obtained when the inlet flow nonuniformity is located at midpitch, while lower effectiveness and higher losses are obtained when it is aligned to the vane leading edge. Moving the nonuniformity axially or changing its blockage only marginally influences the platform thermal protection.

References

References
1.
Oke
,
R. A.
, and
Simon
,
T. W.
,
2002
, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
ASME
Paper No. GT-2002-30169.
2.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
3.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
4.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
5.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME
Paper No. 95-GT-001.
6.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
7.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME
Paper No. 2001-GT-0146.
8.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME
Paper No. 2001-GT-0145.
9.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5255
5269
.
10.
Kost
,
F.
, and
Mullaert
,
A.
,
2006
, “
Migration of Film-Coolant From Slot and Hole Ejection at a Turbine Vane Endwall
,”
ASME
Paper No. GT2006-90355.
11.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2015
, “
Aerodynamic and Heat Transfer Characterization of a Nozzle Vane Cascade With and Without Platform Cooling
,”
ASME
Paper No. GT2015-42845.
12.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021009
.
13.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.
14.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul.
,
5
(
1
), pp.
64
71
.
15.
Stitzel
,
S.
, and
Thole
,
K. A.
,
2004
, “
Flow Field Computations of Combustor-Turbine Interactions Relevant to a Gas Turbine Engine
,”
ASME J. Turbomach.
,
126
(
1
), pp.
122
129
.
16.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
17.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamic and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.
18.
Jenkins
,
S. C.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
19.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
20.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2014
, “
Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions
,”
ASME
Paper No. GT2014-25280.
21.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane
,” 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (
ETC
), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-095.
22.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2015
, “
Combustor Wall Axial Location Effects on First Vane Leading-Edge Cooling
,”
J. Propul. Power
,
31
(
4
), pp.
1094
1106
.
23.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2014
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081503
.
24.
Naik
,
S.
,
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2014
, “
Multirow Film Cooling Performances of a High Lift Blade and Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051003
.
25.
Perdichizzi
,
A.
,
Abdeh
,
H.
,
Barigozzi
,
G.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2016
, “
Aerothermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part I: Influence of Nonuniformity Location
,”
ASME J. Turbomach.
,
139
(
3
), p.
031002
.
26.
Johnson
,
B.
,
Zhang
,
K.
,
Tian
,
W.
, and
Hu
,
H.
,
2013
, “
An Experimental Study on Film Cooling Effectiveness by Using PIV and PSP Techniques
,”
AIAA
Paper No. 2013-0603.
27.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
28.
Greiner
,
N. J.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2014
, “
Scaling of Film Cooling Performance From Ambient to Engine Temperatures
,”
ASME
Paper No. GT2014-25702.
29.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
30.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling: Part II—Adiabatic Effectiveness Results
,”
ASME
Paper No. GT2007-27079.
31.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
(
4
), pp.
765
775
.
32.
Eckert
,
E. R. G.
,
1986
, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
,
13
(
2
), pp.
127
143
.
You do not currently have access to this content.