Effect of turbine endwall contouring on its aerodynamic performance has been widely studied, but only a few studies are available in the open literature investigating its effect on heat transfer performance; especially at transonic exit Mach number conditions. In this paper, we report a study of effect of contouring on endwall heat transfer performance of a high-turning high-pressure (HP) turbine blade passage operating under transonic exit conditions. The paper describes comparison of heat transfer performance of two contoured endwall geometries, one aerodynamically optimized (AO) and the other heat transfer optimized (HTO), with a baseline, noncontoured geometry. The endwall geometries were experimentally investigated at Virginia Tech's transient, blow down, transonic linear cascade facility at three exit Mach numbers, Mex= 0.71, 0.88(design) and 0.95, for their heat transfer performance. Endwall surface temperatures were measured using infrared (IR) thermography and local heat transfer coefficient (HTC) values were calculated using measured temperatures. A camera matrix model-based data postprocessing technique was developed to relate the two-dimensional images captured by IR camera to three-dimensional endwall contours. The measurement technique and the methodology for postprocessing of the heat transfer coefficient data have been presented in detail. Discussion and interpretation of experimental results have been augmented using aerodynamic CFD simulations of the geometries. Both the contoured endwalls demonstrated a significant reduction in the overall average heat transfer coefficient values of the order of 10%. The surface Stanton number distributions also indicated a reduction in the level of hot spots for most of the endwall surface. However, at some locations an increase was also observed, especially in the area near the leading edge (LE). The results indicate that the endwall contouring could significantly improve heat transfer performance of turbine passages.

References

1.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
2.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
3.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls. Part II—Experimental Validation
,”
ASME
Paper No. 2001-GT-505.
4.
Nagel
,
M. G.
, and
Baier
,
R. D.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parameterized Turbine Vane With Nonaxisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
.
5.
Saha
,
A. K.
, and
Acharya
,
S.
,
2006
, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Non-Axisymmetric Blade Passage
,”
ASME
Paper No. GT2006-90390.
6.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
,
2007
, “
Aerodynamic Measurements in a Linear Turbine Blade Passage With Three-Dimensional Endwall Contouring
,”
ASME
Paper No. GT2007-28073.
7.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579.
8.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
ASME
Paper No. GT2009-59169.
9.
Schobeiri
,
M. T.
, and
Lu
,
K.
,
2011
, “
Endwall Contouring Using Continuous Diffusion, a Breakthrough Method and Its Application to a Three-Stage High Pressure Turbine
,”
ASME
Paper No. GT2011-45931.
10.
Dunn
,
D.
,
Snedden
,
G.
,
von Backström
,
T.
, and
Mdluli
,
M. P.
,
2013
, “
Unsteady Effects of a Generic Non-Axisymmetric Endwall Contour on the Rotor of a 1 1/2 Stage Low Speed Turbine Test Rig
,”
ASME
Paper No. GT2013-94961.
11.
Lyall
,
M. E.
,
King
,
P. I.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part I: Airfoil Design
,”
ASME
Paper No. GT2013-95000.
12.
Sangston
,
K.
,
Little
,
J.
,
Lyall
,
E. M.
, and
Sondergaard
,
R.
,
2013
, “
Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation
,”
ASME
Paper No. GT2013-95002.
13.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2014
, “
Investigation of Non-Axisymmetric Endwall Contouring and 3D Airfoil Design in a 1.5 Stage Axial Turbine Part I: Design and Novel Numerical Analysis Method
,”
ASME
Paper No. GT2014-26784.
14.
Panchal
,
K.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Brown
,
B. J.
, and
Malandra
,
A.
,
2011
, “
Investigation of Effect of Endwall Contouring Methods on a Transonic Turbine Blade Passage
,”
ASME
Paper No. GT2011-45192.
15.
Abraham
,
S.
,
Panchal
,
K.
,
Ekkad
,
S. V.
,
Ng
,
W. F.
,
Lohaus
,
A. S.
, and
Malandra
,
A.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Part I—Aerodynamic Performance
,”
ASME
Paper No. GT2012-68425.
16.
Taremi
,
F.
, and
Sjolander
,
S. A.
,
2011
, “
Application of Endwall Contouring to Transonic Turbine Cascades: Experimental Measurements at Design Conditions
,”
ASME
Paper No. GT2011-46511.
17.
LaFleur
,
R. S.
,
Whitten
,
T. S.
, and
Araujo
,
J. A.
,
1999
, “
Second Vane Endwall Heat Transfer Reduction by Endwall Contouring
,”
ASME
Paper No. 99-GT-422.
18.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2009
, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-60185.
19.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2012
, “
High Resolution Heat Transfer Measurement on Flat and Contoured Endwalls in a Linear Cascade
,”
ASME
Paper No. GT2012-69737.
20.
Winkler
,
S.
,
Haase
,
K.
,
Janosch
,
B.
, and
Weigand
,
B.
,
2014
, “
Turbine Endwall Contouring for the Reduction of Endwall Heat Transfer Using the Ice Formation Method Along With Computational Fluid Dynamics
,”
ASME
Paper No. GT2014-25655.
21.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
, and
Ng
,
W. F.
,
2014
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME
Paper No. GT2014-26476.
22.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
23.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
24.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
25.
Coleman
,
H. W.
,
Brown
,
K. H.
, and
Steele
,
W. G.
,
1995
, “
Estimating Uncertainty Intervals for Linear Regression
,”
AIAA
Paper No. 1995-0796.
26.
Sonka
,
M.
,
Hlavac
,
V.
, and
Boyle
,
R.
,
2007
,
Image Processing, Analysis and Machine Vision
, 3rd ed.,
CL Engineering
,
Ludhiana, India
.
27.
Schalkoff
,
R. J.
,
1989
,
Digital Image Processing and Computer Vision
, International Edition, Wiley, New York.
28.
Pratt
,
W. K.
,
2007
,
Digital Image Processing
, 4th ed., Wiley Interscience, New York.
29.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
,
1996
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
NASA Technical Memorandum 107387
, p.
11
.
You do not currently have access to this content.