The role of additive manufacturing for the hot section components of gas turbine engines grows ever larger as progress in the industry continues. The opportunity for the heat transfer community is to exploit the use of additive manufacturing in developing nontraditional cooling schemes to be built directly into components. This study investigates the heat transfer and pressure loss performance of additively manufactured wavy channels. Three coupons, each containing channels of a specified wavelength (length of one wave period), were manufactured via direct metal laser sintering (DMLS) and tested at a range of Reynolds numbers. Results show that short wavelength channels yield high pressure losses, without corresponding increases in heat transfer, due to the flow structure promoted by the waves. Longer wavelength channels offer less of a penalty in pressure drop with good heat transfer performance.

References

References
1.
Singh
,
P. K.
,
Tan
,
S. H. F.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2013
, “
Flow and Heat Transfer in Branched Wavy Microchannels
,”
ASME
Paper No. MNHMT2013-22058.
2.
Yong
,
J. Q.
, and
Teo
,
C. J.
,
2014
, “
Mixing and Heat Transfer Enhancement in Microchannels Containing Converging-Diverging Passages
,”
ASME J. Heat Transfer
,
136
(
4
), p.
41704
.
3.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.
4.
Guzmán
,
A. M.
,
Cárdenas
,
M. J.
,
Urzúa
,
F. A.
, and
Araya
,
P. E.
,
2009
, “
Heat Transfer Enhancement by Flow Bifurcations in Asymmetric Wavy Wall Channels
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3778
3789
.
5.
Khaing
,
M.
,
Fuh
,
J.
, and
Lu
,
L.
,
2001
, “
Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
269
272
.
6.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.
7.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
8.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.
9.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Li
,
Y. Q.
,
Mao
,
D. F.
, and
Zhang
,
M. Y.
,
2013
, “
Experimental Investigation on Friction Factor in Pipes With Large Roughness
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
147
153
.
10.
Dai
,
B.
,
Li
,
M.
, and
Ma
,
Y.
,
2014
, “
Effect of Surface Roughness on Liquid Friction and Transition Characteristics in Micro- and Mini-Channels
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
283
293
.
11.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
12.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
13.
Norris
,
R. J.
,
1971
,
Some Simple Approximate Heat Transfer Correlations for Turbulent Flow in Ducts With Surface Roughness
,
ASME
,
New York
.
14.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
15.
Wong
,
M.
,
Owen
,
I.
,
Sutcliffe
,
C. J.
, and
Puri
,
A.
,
2009
, “
Convective Heat Transfer and Pressure Losses Across Novel Heat Sinks Fabricated by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
281
288
.
16.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.
17.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1240
1257
.
18.
Chang
,
S. W.
,
Lees
,
A. W.
, and
Chou
,
T. C.
,
2009
, “
Heat Transfer and Pressure Drop in Furrowed Channels With Transverse and Skewed Sinusoidal Wavy Walls
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4592
4603
.
19.
Stone
,
K. M.
, and
Vanka
,
S. P.
,
1997
, “
Numerical Study of Flow and Heat Transfer in Wavy Passages
,”
Air Condition and Refrigeration Center, University of Illinois
,
Champaign, IL
.
20.
Snyder
,
B.
,
Li
,
K. T.
, and
Wirtz
,
R. A.
,
1993
, “
Heat Transfer Enhancement in a Serpentine Channel
,”
Int. J. Heat Mass Transfer
,
36
(
12
), pp.
2965
2976
.
21.
EOS, “
Basic Training EOSINT M 280
,” EOS GmbH, Krailling, Germany.
22.
Volume Graphics, 2014, “
Volume Graphics MAX
,” Volume Graphics Heidelberg, Germany.
23.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
41014
.
24.
EOS
,
2014
, “
EOS Nickel Alloy IN718 for EOSINT M 270 Systems: Material Data Sheet
,” EOS, Krailling, Germany.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing the Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
26.
ANSYS
,
2015
, “Ansys Fluent,” ANSYS, Canonsburg, PA.
27.
Pointwise
,
2015
, “
Pointwise,” Pointwise, Fort Worth, TX
.
28.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2010
,
Fluid Mechanics: Fundamentals and Applications
,
2nd ed.
,
McGraw-Hill Higher Education
,
Boston, MA
.
29.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
30.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
12
(
2
), pp.
362
367
.
31.
Kirsch
,
K. L.
,
Ostanek
,
J. K.
,
Thole
,
K. A.
, and
Kaufman
,
E.
,
2014
, “
Row Removal Heat Transfer Study for Pin Fin Arrays
,”
ASME
Paper No. GT2014-25570.
32.
Ostanek
,
J. K.
,
2012
, “
Flowfield Interactions in Low Aspect Ratio Pin-Fin Arrays
,”
Doctor of Philosophy dissertation
, Penn State University, University Park, PA.https://etda.libraries.psu.edu/catalog/13906
33.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR=4:1)
,”
ASME J. Turbomach.
,
124
(
4
), pp.
604
614
.
You do not currently have access to this content.