Flow in an intermediate turbine duct (ITD) is highly complex, influenced by the upstream turbine stage flow structures, which include tip leakage flow and nonuniformities originating from the upstream high pressure turbine (HPT) vane and rotor. The complexity of the flow structures makes predicting them using numerical methods difficult, hence there exists a need for experimental validation. To evaluate the flow through an intermediate turbine duct including a turning vane, experiments were conducted in the Oxford Turbine Research Facility (OTRF). This is a short duration high speed test facility with a 3/4 engine-sized turbine, operating at the correct nondimensional parameters for aerodynamic and heat transfer measurements. The current configuration consists of a high pressure turbine stage and a downstream duct including a turning vane, for use in a counter-rotating turbine configuration. The facility has the ability to simulate low-NOx combustor swirl at the inlet to the turbine stage. This paper presents experimental aerodynamic results taken with three different turbine stage inlet conditions: a uniform inlet flow and two low-NOx swirl profiles (different clocking positions relative to the high pressure turbine vane). To further explain the flow through the 1.5 stage turbine, results from unsteady computational fluid dynamics (CFD) are included. The effect of varying the high pressure turbine vane inlet condition on the total pressure field through the 1.5 stage turbine, the intermediate turbine duct vane loading, and intermediate turbine duct exit condition are discussed and CFD results are compared with experimental data. The different inlet conditions are found to alter the flow exiting the high pressure turbine rotor. This is seen to have local effects on the intermediate turbine duct vane. With the current stator–stator vane count of 32-24, the effect of relative clocking between the two is found to have a larger effect on the aerodynamics in the intermediate turbine duct than the change in the high pressure turbine stage inlet condition. Given the severity of the low-NOx swirl profiles, this is perhaps surprising.

References

References
1.
Povey
,
T.
,
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
Heat Transfer Measurements on an Intermediate-Pressure Nozzle Guide Vane Tested in a Rotating Annular Turbine Facility, and the Modifying Effects of a Non-Uniform Inlet Temperature Profile
,”
J. Power Energy
,
217
(
4
), pp.
421
431
.
2.
Chana
,
K. S.
,
Singh
,
U. K.
, and
Povey
,
T.
,
2004
, “
Turbine Heat Transfer and Aerodynamic Measurements and Prediction for a 1.5 Stage Configuration
,”
ASME
Paper No. GT2004-53951.
3.
Santner
,
C.
,
Göttlich
,
E.
,
Wallin
,
F.
, and
Hoeger
,
M.
,
2011
, “
Experimental Investigation of Turning Mid Turbine Frame Designs
,” XX International Symposium on Air Breathing Engines (
ISABE 2011
), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE2011-1710, pp.
1763
1773
.
4.
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Hoeger
,
M.
,
Hubinka
,
J.
, and
Göttlich
,
E.
,
2011
, “
Evolution of the Flow Through a Mid Turbine Frame Applied Between a Transonic HP-Turbine and a Counter-Rotating LP-Turbine
,”
9th European Turbomachinery Conference
, p.
110
.
5.
Arroyo Osso
,
C.
,
2009
, “
Aerothermal Investigation of an Intermediate Turbine Duct
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.http://publications.lib.chalmers.se/publication/102228-aerothermal-investigation-of-an-intermediate-turbine-duct
6.
Axelsson
,
L.
,
2009
, “
Experimental Investigations of the Flow Field in an Aggressive Intermediate Turbine Duct
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.http://publications.lib.chalmers.se/publication/92397-experimental-investigation-of-the-flow-field-in-an-aggressive-intermediate-turbine-duct
7.
Lavagnoli
,
S.
,
Yasa
,
T.
,
Paniagua
,
G.
,
Castillon
,
L.
, and
Duni
,
S.
,
2012
, “
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an s-Shape Duct
,”
ASME J. Turbomach.
,
134
(
1
), p.
0111013
.
8.
Solano
,
J.
,
Pinilla
,
V.
,
Paniagua
,
G.
,
Lavagnoli
,
S.
, and
Yasa
,
T.
,
2011
, “
Aero-Thermal Investigation of a Multi-Splitter Axial Turbine
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1036
1046
.
9.
Spataro
,
R.
,
Göttlich
,
E.
,
Lengani
,
D.
,
Faustmann
,
C.
, and
Heitmeir
,
F.
,
2014
, “
Development of a Turning Mid Turbine Frame With Embedded Design—Part 1: Design and Steady Measurements
,”
ASME J. Turbomach.
,
136
(
7
), p.
071008
.
10.
Spataro
,
R.
,
Göttlich
,
E.
,
Lengani
,
D.
,
Faustmann
,
C.
, and
Heitmeir
,
F.
,
2014
, “
Development of a Turning Mid Turbine Frame With Embedded Design—Part 2: Unsteady Measurements
,”
ASME J. Turbomach.
,
136
(
7
), p.
071012
.
11.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Aerodynamic and Heat-Flux Measurements With Predictions on A Modern One and 1/2 Stage High Pressure Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
522
531
.
12.
Billiard
,
N.
,
Paniagua
,
G.
, and
Dnos
,
R.
,
2008
, “
Impact of Clocking on the Aero-Thermodynamics of a Second Stator Tested in a One and a Half Stage HP Turbine
,”
J. Therm. Sci.
,
17
(
2
), pp.
97
110
.
13.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Experimental Investigation of Vane Clocking in a One and 1/2 Stage High Pressure Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
512
521
.
14.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
15.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2011
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME
Paper No. GT2011-46038.
16.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
17.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
,
2003
, “
The Design and Performance of a Transonic Flow Deswirling System—An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments
,”
Advances of CFD in Fluid Machinery Design
,
Professional Engineering Publishing
,
Bury St. Edmonds, UK
. pp.
65
94
.https://books.google.com/books?hl=en&lr=&id=6XXeVgATOUsC&oi=fnd&pg=PA65&dq=The+Design+and+Performance+of+a+Transonic+Flow+Deswirling+System%E2%80%94An+511+Application+of+Current+CFD+Design+Techniques+Tested+Against+Model+and+Full-Scale+Experiments,&ots=q3pcAVvMBs&sig=AXvNt3UOgECfLNb2GzPY86D_3ng#v=onepage&q&f=false
18.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
,
1992
, “
An Axial Turbobrake
,”
ASME J. Turbomach.
,
114
(
2
), pp.
419
425
.
19.
Chana
,
K.
,
Cardwell
,
D.
, and
Jones
,
T.
,
2013
, “
A Review of the Oxford Turbine Research Facility
,”
ASME
Paper No. GT2013-95687.
20.
Johansson
,
M.
,
Povey
,
T.
,
Chana
,
K.
,
Wallin
,
F.
, and
Abrahamsson
,
H.
,
2014
, “
Aerodynamic and Heat Transfer Measurements on an Intermediate Turbine Duct Vane
,”
ASME
Paper No. GT2014-26032.
21.
Johansson
,
M.
,
Abrahamsson
,
H.
,
Mårtensson
,
J.
,
Povey
,
T.
, and
Chana
,
K.
,
2015
, “
Aerothermal Measurements and Predictions of an Intermediate Turbine Duct Turning Vane
,”
ASME
Paper No. GT2015-43449.
22.
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
A Combustor-Representative Swirl Simulator for a Transonic Turbine Research Facility
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
225
(
7
), pp.
737
748
.
23.
Main
,
A.
,
Day
,
C.
,
Lock
,
G.
, and
Oldfield
,
M.
,
1996
, “
Calibration of a Four-Hole Pyramid Probe and Area Traverse Measurements in a Short-Duration Transonic Turbine Cascade Tunnel
,”
Exp. Fluids
,
21
(
4
), pp.
302
311
.
You do not currently have access to this content.