Unsteady blade row interactions play an important role in the performance of multistage turbomachinery. However, most aerodynamic optimizations of multistage turbomachinery are based on mixing-plane steady flow simulations. To take into account the unsteady flow features in the optimization cycle, this paper develops an adjoint-based unsteady aerodynamic optimization system for multistage turbomachinery. To the authors' best knowledge, this is the first work in the literature conducting the unsteady adjoint aerodynamic optimization of multistage turbomachinery. The unsteady flow equations and the discrete adjoint equations are solved using a finite volume code, with the harmonic balance method adopted to reduce the cost of unsteady simulations. The system is applied to the unsteady aerodynamic optimization of a 1.5-stage compressor. Results show the efficiency and capability of the proposed framework for the unsteady aerodynamic optimization of multistage turbomachinery.

References

References
1.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
2.
Gourdain
,
N.
,
2011
, “
High Performance Computing of Gas Turbine Flows: Current and Future Trends
,” Habilitation à Diriger des Recherches, Ecole Centrale de Lyon, Écully, France.
3.
Pironneau
,
O.
,
1973
, “
On Optimum Profiles in Stokes Flow
,”
J. Fluid Mech.
,
59
(
1
), pp.
117
128
.
4.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
5.
Frank
,
P. D.
, and
Shubin
,
G. R.
,
1992
, “
A Comparison of Optimization-Based Approaches for a Model Computational Aerodynamics Design Problem
,”
J. Comput. Phys.
,
98
(
1
), pp.
74
89
.
6.
Duta
,
M. C.
,
Shahpar
,
S.
, and
Giles
,
M. B.
,
2007
, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,”
ASME
Paper No. GT2007-28329.
7.
Wang
,
D. X.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p.
021011
.
8.
Walther
,
B.
, and
Nadarajah
,
S.
,
2012
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single-Stage Transonic Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021017
.
9.
Shahpar
,
S.
, and
Caloni
,
S.
,
2013
, “
Aerodynamic Optimization of High-Pressure Turbines for Lean-Burn Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
055001
.
10.
Li
,
H.
,
Song
,
L.
,
Li
,
Y.
, and
Feng
,
Z.
,
2010
, “
2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method
,”
ASME J. Turbomach.
,
133
(
3
), p.
031014
.
11.
Ji
,
L. C.
,
Li
,
W. W.
,
Tian
,
Y.
,
Yi
,
W. L.
, and
Chen
,
J.
,
2012
, “
Multi-Stage Turbomachinery Blades Optimization Design Using Adjoint Method and Thin Shear-Layer N-S Equations
,”
ASME
Paper No. GT2012-68537.
12.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2013
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.
13.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
AIAA
Paper No. 2000-0667.
14.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2002
, “
Optimal Control of Unsteady Flows Using a Time Accurate Method
,”
AIAA
Paper No. 2002-5436.
15.
Mani
,
K.
, and
Mavriplis
,
D. J.
,
2008
, “
Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems With Deforming Meshes
,”
AIAA J.
,
46
(
6
), pp.
1351
1364
.
16.
Yamaleev
,
N.
,
Diskin
,
B.
, and
Nielsen
,
E.
,
2008
, “
Adjoint-Based Methodology for Time-Dependent Optimization
,”
AIAA
Paper No. 2008-5857.
17.
Rumpfkeil
,
M. P.
, and
Zingg
,
D. W.
,
2010
, “
The Optimal Control of Unsteady Flows With a Discrete Adjoint Method
,”
Optim. Eng.
,
11
(
1
), pp.
5
22
.
18.
Lei
,
J.
, and
He
,
J.
,
2015
, “
Adjoint-Based Aerodynamic Shape Optimization for Low Reynolds Number Airfoils
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021401
.
19.
Goinis
,
G.
,
Stollenwerk
,
S.
,
Nicke
,
E.
, and
Kugeler
,
E.
,
2011
, “
Steady State Versus Time-Accurate CFD in an Automated Airfoil Section Optimization of a Counter Rotating Fan Stage
,”
ASME
Paper No. GT2011-46190.
20.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1984
, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid Mech.
,
149
, pp.
403
429
.
21.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA J.
,
27
(
6
), pp.
777
787
.
22.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
23.
Ekici
,
K.
, and
Hall
,
K. C.
,
2007
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA J.
,
45
(
5
), pp.
1047
1057
.
24.
Vilmin
,
S.
,
Lorrain
,
E.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-Row Effects
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
88
99
.
25.
Sicot
,
F.
,
Gudeney
,
T.
, and
Dufour
,
G.
,
2013
, “
Time-Domain Harmonic Balance Method for Aerodynamic and Aeroelastic Simulations of Turbomachinery Flows
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
68
78
.
26.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H. P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.
27.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2007
, “
Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Nonlinear Frequency-Domain Method
,”
J. Aircr.
,
44
(
5
), pp.
1513
1527
.
28.
Thomas
,
J. P.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
,
2005
, “
Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities
,”
AIAA J.
,
43
(
9
), pp.
1931
1936
.
29.
Choi
,
S.
,
Potsdam
,
M.
,
Lee
,
K.
,
Iaccarino
,
G.
, and
Alonso
,
J.
,
2008
, “
Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method
,”
AIAA
Paper No. 2008-5810.
30.
Mader
,
C. A.
, and
Martins
,
J. R. R. A.
,
2014
, “
Computing Stability Derivatives and Their Gradients for Aerodynamic Shape Optimization
,”
AIAA J.
,
52
(
11
), pp.
2533
2546
.
31.
Florea
,
R.
, and
Hall
,
K. C.
,
2001
, “
Sensitivity Analysis of Unsteady Inviscid Flow Through Turbomachinery Cascades
,”
AIAA J.
,
39
(
6
), pp.
1047
1056
.
32.
Duta
,
M. C.
,
Giles
,
M. B.
, and
Campobasso
,
M. S.
,
2002
, “
The Harmonic Adjoint Approach to Unsteady Turbomachinery Design
,”
Int. J. Numer. Methods Fluids
,
40
(
3–4
), pp.
323
332
.
33.
He
,
L.
, and
Wang
,
D. X.
,
2010
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
34.
Huang
,
H.
, and
Ekici
,
K.
,
2014
, “
A Discrete Adjoint Harmonic Balance Method for Turbomachinery Shape Optimization
,”
Aerosp. Sci. Technol.
,
39
, pp.
481
490
.
35.
Engels-Putzka
,
A.
, and
Frey
,
C.
,
2015
, “
Adjoint Harmonic Balance Method for Forced Response Analysis in Turbomachinery
,”
VI International Conference on Computational Methods for Coupled Problems in Science and Engineering
, Venice, Italy, Mar. 18–20, pp. 645–656.http://elib.dlr.de/96512/
36.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2015
, “
Discrete Adjoint Solution of Unsteady Turbulent Flow in Compressor
,”
ASME
Paper No. GT2015-42948.
37.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2015
, “
Unsteady Aerodynamic Optimization of Compressor With Discrete Adjoint Method
,” International Gas Turbine Congress, pp. 229–238.
38.
Toro
,
E. F.
,
Spruce
,
M.
, and
Speares
,
W.
,
1994
, “
Restoration of the Contact Surface in the HLL-Riemann Solver
,”
Shock Waves
,
4
(
1
), pp.
25
34
.
39.
Su
,
X.
,
Sasaki
,
D.
, and
Nakahashi
,
K.
,
2013
, “
On the Efficient Application of Weighted Essentially Nonoscillatory Scheme
,”
Int. J. Numer. Methods Fluids
,
71
(
2
), pp.
185
207
.
40.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.
41.
Swanson
,
R. C.
,
Turkel
,
E.
, and
Rossow
,
C. C.
,
2007
, “
Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations
,”
J. Comput. Phys.
,
224
(
1
), pp.
365
388
.
42.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
43.
Gopinath
,
A. K.
,
2007
, “
Efficient Fourier-Based Algorithms for Time-Periodic Unsteady Problems
,”
Ph.D. thesis
, Stanford University, Stanford, CA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.92&rep=rep1&type=pdf
44.
Ma
,
C.
,
Su
,
X.
,
Gou
,
J.
, and
Yuan
,
X.
,
2014
, “
Runge–Kutta/Implicit Scheme for the Solution of Time Spectral Method
,”
ASME
Paper No. GT2014-26474.
45.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.
46.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
,
2011
, “
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
,”
ASME J. Turbomach.
,
134
(
1
), p.
011001
.
47.
Saad
,
Y.
, and
Schultz
,
M. H.
,
1986
, “
GMRES—A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear-Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.
48.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids
,”
ASME J. Turbomach.
,
137
(
8
), p.
081006
.
49.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
50.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
SIGGRAPH Comput. Graphics
,
20
(
4
), pp.
151
160
.
51.
Dunker
,
R. J.
,
1983
, “
Measurements in the Stator Row of a Single-Stage Transonic Axial-Flow Compressor With Controlled Diffusion Stator Blades
,”
Paper No. AGARD CP 351 23
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADP003088
52.
Subramanian
,
V.
,
Custer
,
C. H.
,
Weiss
,
J. M.
, and
Hall
,
K. C.
,
2013
, “
Unsteady Simulation of a Two-Stage Cooled High Pressure Turbine Using an Efficient Non-Linear Harmonic Balance Method
,”
ASME
Paper No. GT2013-94574.
You do not currently have access to this content.