Facilities such as the Turbine Research Facility (TRF) at the Air Force Research Laboratory have been acquiring uncooled heat transfer measurements on full-scale metallic airfoils for several years. The addition of cooling flow to this type of facility has provided new capabilities and new challenges. Two primary challenges for cooled rotating hardware are that the true local film temperature is unknown, and cooled thin-walled metallic airfoils prohibit semi-infinite heat conduction calculation. Extracting true local adiabatic effectiveness and the heat transfer coefficient from measurements of surface temperature and surface heat transfer is therefore difficult. In contrast, another cooling parameter, the overall effectiveness (ϕ), is readily obtained from the measurements of surface temperature, internal coolant temperature, and mainstream temperature. The overall effectiveness is a normalized measure of surface temperatures expected for actual operating conditions and is thus an important parameter that drives the life expectancy of a turbine component. Another issue is that scaling ϕ from experimental conditions to engine conditions is dependent on the heat transfer through the part. It has been well-established that the Biot number must be matched for the experimentally measured ϕ to match ϕ at engine conditions. However, the thermal conductivity of both the metal blade and the thermal barrier coating changes substantially from low-temperature to high-temperature engine conditions and usually not in the same proportion. This paper describes a novel method of replicating the correct thermal behavior of the thermal barrier coating (TBC) relative to the metal turbine while obtaining surface temperature measurements and heat fluxes. Furthermore, this paper describes how the ϕ value obtained at the low-temperature conditions can be adjusted to predict ϕ at high-temperature engine conditions when it is impossible to match the Biot number perfectly.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998.
3.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
4.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
5.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
6.
Ekkad Srinath
,
V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
7.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
1999
, “
Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade
,”
ASME
Paper No. 99-GT-259.
8.
Diller
,
T. E.
,
1993
, “
Advances in Heat Flux Measurement
,”
Advances in Heat Transfer
,
Vol. 23
,
Elsevier, Amsterdam
,
The Netherlands
, pp.
279
368
.
9.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
1998
, “
The Application of Thin Film Technology to Measure Turbine-Vane Heat Transfer and Effectiveness in a Film-Cooled, Engine-Simulated Environment
,”
Int. J. Heat Fluid Flow
,
19
(
6
), pp.
594
600
.
10.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effects Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
11.
Sweeny
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
12.
Mouzon
,
B. D.
,
Albert
,
J. E.
,
Terrell
,
E. J.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002.
13.
Dyson
,
T. E.
,
Bogard
,
D. G.
,
Piggush
,
J. D.
, and
Kohli
,
A.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p.
031011
.
14.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(
5
), p.
051007
.
15.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
16.
Lawson
,
S. A.
,
Straub
,
D. L.
,
Beer
,
S.
,
Casleton
,
K. H.
, and
Sidwell
,
T.
,
2013
, “
Direct Measurements of Overall Effectiveness and Heat Flux on a Film Cooled Test Article at High Temperatures and Pressures
,”
ASME
Paper No. GT2013-94685.
17.
Guo
,
S. M.
,
Spencer
,
M. C.
,
Lock
,
G. D.
,
Jones
,
T. V.
, and
Harvey
,
N. W.
,
1995
, “
The Application of Thin Film Gauges on Flexible Plastic Substrates to the Gas Turbine Situation
,”
ASME
Paper No. 95-GT-357.
18.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
,
2008
, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part 1: Experimental Approach
,”
ASME J. Turbomach.
,
130
(
2
), p.
021015
.
19.
Joe
,
C. R.
,
Montesdeoca
,
X. A.
,
Soechting
,
F. O.
,
MacArthur
,
C. D.
, and
Meininger
,
M.
,
1998
, “
High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements With Comparisons to Predictions
,”
ASME
Paper No. 98-GT-430.
20.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2007
, “
Experimental Evaluation of an Inlet Profile Generator for High Pressure Turbine Tests
,”
ASME J. Turbomach.
,
129
(
2
), pp.
382
393
.
21.
Polanka
,
M. D.
,
Gillaugh
,
T. G.
,
Anthony
,
R. A.
,
Umholtz
,
M.
, and
Reeder
,
M. F.
,
2007
, “
Comparisons of Three Cooling Techniques in a High Speed, True Scale, Fully Cooled Turbine Vane Ring
,”
AIAA
Paper No. 2007-5097.
22.
Stewart
,
W. R.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Effects of TBC Thickness on an Internally and Film Cooled Model Turbine Vane
,”
ASME
Paper No. GT2014-27117.
23.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine—Part I: Influence of Cooling Variation
,”
ASME J. Turbomach.
,
134
(
3
), p.
031014
.
24.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R. J.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091601
.
25.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2016
, “
Improved Methodologies for Time Resolved Heat Transfer Measurements, Demonstrated on an Unshrouded Transonic Turbine Casing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111007
.
26.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
,
2000
, “
The Development of a New Direct Heat Flux Gauge for Heat Transfer Facilities
,”
J. Meas. Sci. Technol.
,
11
(
4
), pp.
342
349
.
27.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.