This study focuses on the engine-representative MT1 transonic high-pressure turbine. Simulated by use of wall-modeled large-eddy simulations (LES) with three different subgrid scale (SGS) closures, mean pressure profiles across the blades as well as mean radial profiles at the rotor exit are found to be in good agreement with experimental data with only local differences between models. Unsteady flow features, inherently present in LES, are however affected by SGS modeling. This is evidenced by the relative energetic content of the deterministic to stochastic turbulent contributions evaluated, thanks to the triple decomposition analysis of the simulations. Origins of such differences are found to impact the entire radial distribution of the flow and activity, with deterministic and chaotic contributions distributed differently depending on the SGS model and reference frequency used to extract the deterministic signal. Such flow responses can be attributed to the different SGS capacities to satisfy basic turbulent flow features that translate in different dissipative and turbulent diffusive contributions of the three SGS models.

References

References
1.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows—Part 2: LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.
2.
Menzies
,
K.
,
2009
, “
Large Eddy Simulation Applications in Gas Turbines
,”
Philos. Trans. R. Soc.
,
367
(
1899
), pp.
2827
2838
.
3.
Collado-Morata
,
E.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Structured vs Unstructured LES for the Prediction of Free-Stream Turbulence Effects on the Heat Transfer of a High Pressure Turbine Profile
,”
J. Heat Mass Transfer
,
55
(
21–222
), pp.
5754
5768
.
4.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
5.
Chapman
,
D.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.
6.
Michelassi
,
V.
,
Wissink
,
J.
,
Froehlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.
7.
Duchaine
,
F.
,
Maheu
,
N.
,
Moureau
,
V.
,
Balarac
,
G.
, and
Moreau
,
S.
,
2013
, “
Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade
,”
ASME J. Turbomach.
,
136
(
5
), p.
051015
.
8.
Gourdain
,
N.
,
2013
, “
Validation of Large-Eddy Simulation for the Prediction of Compressible Flow in an Axial Compressible Stage
,”
ASME
Paper No. GT2013-94550.
9.
McMullan
,
W.
, and
Page
,
G.
,
2012
, “
Towards Large Eddy Simulation of Gas Turbine Compressors
,”
Prog. Aerosp. Sci.
,
52
, pp.
30
47
.
10.
Wang
,
G.
,
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L.
,
2013
, “
Towards Massively Parallel Large Eddy Simulation of Turbine Stages
,”
ASME
Paper No. GT2013-94852.
11.
Wang
,
G.
,
Moreau
,
S.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L.
,
2013
, “
LES of the MT1 HP Turbine Using Turbo AVBP
,”
21st Annual Conference of the CFD Society of Canada, Sherbrooke, QC, Canada, May 6–9
.
12.
Wang
,
G.
,
Duchaine
,
F.
,
Papadogiannis
,
D.
,
Duran
,
I.
,
Moreau
,
S.
, and
Gicquel
,
L.
,
2014
, “
An Overset Grid Method for Large Eddy Simulation of Turbomachinery Stages
,”
J. Comput. Phys.
,
274
, pp.
333
355
.
13.
de Laborderie
,
J.
,
Moreau
,
S.
, and
Berry
,
A.
,
2013
, “
Compressor Stage Broadband Noise Prediction Using a Large-Eddy Simulation and Comparisons With a Cascade Response Model
,”
AIAA
Paper No. 2013-2042.
14.
Wang
,
G.
,
Moreau
,
S.
,
Duchaine
,
F.
,
de Laborderie
,
J.
, and
Gicquel
,
L.
,
2014
, “
LES Investigation of Aerodynamics Performance in an Axial Compressor Stage
,”
22nd Annual Conference of the CFD Society of Canada
, Toronto, Canada, June 1–4.
15.
Beard
,
P.
,
Smith
,
A.
, and
Povey
,
T.
,
2011
, “
Experimental and Computational Fluid Dynamics Investigation of the Efficiency of an Unshrouded Transonic High Pressure Turbine
,”
J. Power Energy
,
225
(
8
), pp.
1166
1179
.
16.
Salvadori
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Adami
,
P.
,
Chana
,
K.
, and
Castillon
,
L.
,
2011
, “
Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine With Inlet Temperature Distortions
,”
ASME J. Turbomach.
,
133
(
3
), p.
031030
.
17.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
18.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2012
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
19.
Sagaut
,
P.
,
2002
,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
Berlin
.
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
22.
Nicoud
,
F.
,
Baya-Toda
,
H.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.
23.
Moind
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.
24.
Piomelli
,
U.
,
Zang
,
T.
,
Speziale
,
C. G.
, and
Hussaini
,
M. Y.
,
1990
, “
On the Large-Eddy Simulation of Transitional Wall-Bounded Flows
,”
Phys. Fluids
,
2
(
2
), pp.
257
265
.
25.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Sub-Grid Scale Eddy Viscosity Model
,”
Phys. Fluids
,
A
(
3
), pp.
1760
1765
.
26.
Bocquet
,
S.
,
Sagaut
,
P.
, and
Jouhaud
,
J.
,
2012
, “
A Compressible Wall Model for Large Eddy Simulation With Application to Prediction of Aerothermal Quantities
,”
Phys. Fluids
,
24
(
6
), p.
065103
.
27.
Hosseini
,
S.
,
Fruth
,
F.
,
Vogt
,
D.
, and
Gransson
,
T.
,
2011
, “
Effect of Scaling of a Blade Row Sectors on the Prediction of Aerodynamic Forcing in a Highly-Loaded Transonic Turbine Stage
,”
ASME
Paper No. GT2011-45813.
28.
Mayorca
,
M.
,
Andrade
,
J. D.
,
Vogt
,
D.
,
Martensson
,
H.
, and
Fransson
,
T.
,
2010
, “
Effect of Scaling of a Blade Row Sectors on the Prediction of Aerodynamic Forcing in a Highly-Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
133
(
2
), p. 021013.
29.
Schoenfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(11), pp.
1378
1385
.
30.
Duchaine
,
F.
,
Jaure
,
S.
,
Poitou
,
D.
,
Quemerais
,
E.
,
Staffelbach
,
G.
,
Morel
,
T.
, and
Gicquel
,
L.
,
2013
, “
High Performance Conjugate Heat Transfer With the Openpalm Coupler
,”
V International Conference on Coupled Problems in Science and Engineering (COUPLED 2013), Ibiza, Spain, June 17–19
.
31.
Lax
,
P.
, and
Wendroff
,
B.
,
1964
, “
Difference Schemes for Hyperbolic Equations With High Order of Accuracy
,”
Commun. Pure Appl. Math.
,
17
(
3
), pp.
381
398
.
32.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
33.
Koupper
,
C.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2013
, “
On the Ability of Characteristic Boundary Conditions to Comply With Radial Equilibrium in Turbomachinery Simulations
,”
AIAA J.
,
52
(12), pp.
2829
2839
.
34.
Jaegle
,
F.
,
Cabrit
,
O.
,
Mendez
,
S.
, and
Poinsot
,
T.
,
2010
, “
Implementation Methods of Wall Functions in Cell-Vertex Numerical Solvers
,”
Flow, Turbul. Combust.
,
85
(
2
), pp.
245
272
.
35.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
36.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.
37.
Adamczyk
,
J.
,
1984
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,”
ASME
Paper No. 85-GT226.
38.
Adamczyk
,
J.
,
2000
, “
Aerodynamic Analysis of Multi-Stage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
39.
Hussain
,
A.
, and
Reynolds
,
W.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.
You do not currently have access to this content.