This paper presents the swirl purge flow on a platform and a modeled land-based turbine rotor blade suction surface. Pressure-sensitive paint (PSP) mass transfer technique provides detailed film-cooling effectiveness distribution on the platform and phantom cooling effectiveness on the blade suction surface. Experiments were conducted in a low-speed wind tunnel facility with a five-blade linear cascade. The inlet Reynolds number based on the chord length is 250,000. Swirl purge flow is simulated by coolant injection through 50 inclined cylindrical holes ahead of the blade leading edge row. Coolant injections from cylindrical holes pass through nozzle endwall and a dolphin nose axisymmetric contour before reaching the platform and blade suction surface. Different “coolant injection angles” and “coolant injection velocity to cascade inlet velocity” result in various swirl ratios to simulate real engine conditions. Simulated swirl purge flow uses coolant injection angles of 30 deg, 45 deg, and 60 deg to produce swirl ratios of 0.4, 0.6, and 0.8, respectively. Traditional purge flow has a coolant injection angle of 90 deg to generate swirl ratio of 1. Coolant to mainstream mass flow rate (MFR) ratio is 0.5%, 1.0%, and 1.5% for all the swirl ratios. Coolant to mainstream density ratio maintains at 1.5 to match engine conditions. Most of the swirl purge and purge coolant approach the platform; however, a small amount of the coolant migrates to the blade suction surface. Swirl ratio of 0.4 has the highest relative motion between rotor and coolant and severely decreases film cooling and phantom cooling effectiveness. Higher MFR of 1% and 1.5% cases suffers from apparent decrement of the effectiveness while increasing relative motion.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
, Vol.
7
,
T. F.
Irvine
, Jr
. and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
321
379
.
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
4.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
5.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
.
6.
Simon
,
T.
, and
Piggush
,
J.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.
7.
Langston
,
L.
,
1980
, “
Cross Flow in Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.
8.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
9.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part I: Flow Field Measurements
,”
ASME
Paper No. 2000-GT-0199.
10.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part II: Thermal Measurements
,”
ASME
Paper No. 2000-GT-0200.
11.
Oke
,
R. A.
,
Burd
,
S. W.
,
Simon
,
T. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME
Paper No. 2000-GT-0214.
12.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
13.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
14.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.
15.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2012
, “
Upstream Vortex Effects on Turbine Blade Platform Film Cooling With Typical Purge Flow
,”
AIAA J. Thermophys. Heat Transfer
,
26
(
1
), pp.
75
84
.
16.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,”
ASME J. Turbomach.
,
131
(
2
), p.
021017
.
17.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
3
), p.
031015
.
18.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator–Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.
19.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator-Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
20.
Ahn
,
J. Y.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2007
, “
Effect of Rotation on Leading Edge Region Film Cooling of a Gas Turbine Blade With Three Rows of Film Cooling Holes
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
15
25
.
21.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2004
, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,”
ASME
Paper No. IMECE2004-59852.
22.
Suryanarayanan
,
A.
,
Mhetras
,
S.
,
Schobeiri
,
M.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.
23.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.
24.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Film Cooling Effectiveness on a Rotating Turbine With Nonaxisymmetric End Wall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
.
25.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2014
, “
Influence of Purge Flow Injection Angle on the Aerothermal Performance of a Rotor Blade Cascade
,”
ASME J. Turbomach.
,
136
(
4
), p.
041012
.
26.
Matthew
,
S.
,
Goldstein
,
R. J.
,
Simon
,
T. W.
,
Shu
,
F.
, and
Chiyuki
,
N.
,
2014
, “
Effect of Swirled Leakage Flow on Endwall Film Cooling
,”
15th International Heat Transfer Conference
(
IHTC-15
), Kyoto, Japan, Aug. 10–15, Paper No. IHTC 15-9600.
27.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
28.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
AIAA J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
.
29.
Li
,
S. J.
,
Chen
,
A. F.
,
Wang
,
W. H.
, and
Han
,
J. C.
,
2014
, “
Experimental and Computational Film Cooling With Backward Injection for Cylindrical and Fan-Shaped Holes
,”
15th International Heat Transfer Conference
(
IHTC-15
), Kyoto, Japan, Aug. 10–15, Paper No. IHTC 15-9584.
30.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
31.
Gao
,
Z.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2013
, “
Turbine Blade Trailing Edge Slot Film Cooling Using PSP Technique
,”
Int. J. Transp. Phenom.
,
13
, pp.
193
205
.
32.
Li
,
S. J.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
), p.
061026
.
33.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
34.
Zhang
,
Y.
, and
Yuan
,
X.
,
2012
, “
Experimental Investigation of Turbine Phantom Cooling on Suction Side With Combustor-Turbine Leakage Gap Flow and Endwall Film Cooling
,”
ASME
Paper No. GT2012-69295.
35.
Zhang
,
L.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2015
, “
The Effects of Vane Showerhead Injection Angle and Film Compound Angle on Nozzle Endwall Cooling (Phantom Cooling)
,”
ASME J. Turbomach.
,
137
(
2
), p.
021003
.
36.
Zhang
,
L. J.
,
Lee
,
D. H.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2013
, “
The Effect of Axisymmetric Profile on Turbine Blade Platform Heat Transfer Distribution
,”
ASME
Paper No. GT2013-94335.
37.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobbe
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME
Paper No. GT2009-60306.
38.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Am. Soc. Mech. Eng.
,
75
, pp.
3
8
.
39.
Zhang
,
L.
, and
Moon
,
H. K.
,
2011
, “
Comparison of Two Axisymmetric Profiles on Blade Platform Film Cooling
,”
ASME
Paper No. GT2011-45102.
You do not currently have access to this content.