Time-accurate numerical simulations were conducted on the aft-loaded L1A low-pressure turbine airfoil at a Reynolds number of 22,000 (based on inlet velocity magnitude and axial chord length). This flow condition produces a nonreattaching laminar separation zone on the airfoil suction surface. The numerical code TURBO is used to simulate this flow field as an implicit large eddy simulation (ILES). Generally, good agreement was found when compared to experimental time-averaged and instantaneous flow measurements. The numerical separation zone is slightly larger than that in the experiments, though integrated wake loss values improved from Reynolds-averaged Navier–Stokes (RANS)-based simulations. Instantaneous snapshots of the numerical flow field showed the Kelvin Helmholtz instability forming in the separated shear layer and a large-scale vortex shedding pattern at the airfoil trailing edge. These features were observed in the experiments with similar sizes and vorticity levels. Power spectral density analyses revealed a global passage oscillation in the numerics that was not observed experimentally. This oscillation was most likely a primary resonant frequency of the numerical domain.

References

References
1.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
1997
, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows
,”
J. Comput. Phys.
,
131
(
2
), pp.
310
322
.
2.
Amirante
,
D.
, and
Hills
,
N. J.
,
2014
, “
LES of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques
,”
ASME
Paper No. GT2014-26119.
3.
Gross
,
A.
, and
Fasel
,
H. F.
,
2008
, “
Strategies for Simulating Flow Through Low-Pressure Turbine Cascade
,”
ASME J. Fluids Eng.
,
130
(
11
), pp.
1
13
.
4.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2008
, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME J. Turbomach.
,
130
(
2
), p.
021006
.
5.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2009
, “
Transition Mechanisms in Separation Bubbles Under Low and Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
6.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P.
,
2003
, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
636
644
.
7.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
(3), pp.
295
330
.
8.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Flow With Heat Transfer in a Turbine Cascade With Incoming Wakes
,”
J. Fluid Mech.
,
569
, pp.
209
247
.
9.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2005
, “
Numerical Simulation of Separation Control for Transitional Highly Loaded Low-Pressure Turbines
,”
AIAA J.
,
43
(
9
), pp.
1958
1967
.
10.
Chen
,
J. P.
, and
Whitfield
,
D. L.
,
1993
, “
Navier–Stokes Calculations for the Unsteady Flowfield of Turbomachinery
,”
AIAA
Paper No. 93-0676.
11.
Adamczyk
,
J. J.
,
Celestina
,
M.
, and
Chen
,
J. P.
,
1996
, “
Wake-Induced Unsteady Flows: Their Impact on Rotor Performance and Wake Rectification
,”
ASME J. Turbomach.
,
118
(1), pp.
88
95
.
12.
Turner
,
M. G.
,
1996
, “
Multistage Turbine Simulations With Vortex-Blade Interaction
,”
ASME J. Turbomach.
,
118
(
4
), pp.
643
653
.
13.
Green
,
B. R.
,
Barter
,
J. W.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2005
, “
Averaged and Time-Dependent Aerodynamics of a High Pressure Turbine Blade Tip Cavity and Stationary Shroud: Comparison of Computational and Experimental Results
,”
ASME J. Turbomach.
,
127
(
4
), pp.
736
746
.
14.
Gorrell
,
S. E.
,
Car
,
D.
,
Puterbaugh
,
S. L.
,
Estevadeordal
,
J.
, and
Okiishi
,
T. H.
,
2006
, “
An Investigation of Wake-Shock Interactions in a Transonic Compressor With Digital Particle Image Velocimetry and Time-Accurate Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
128
(
4
), pp.
616
626
.
15.
Kulkarni, S.
,
Beach, T. A.
, and
Skoch, G. J.
, “
Computational Study of the CC3 Impeller and Vaneless Diffuser Experiment
,”
AIAA
Paper No. 2013-3631.
16.
Volino
,
R. J.
,
Kartuzova
,
O.
, and
Ibrahim
,
M. B.
,
2008
, “
Experimental and Computational Investigations of Separation and Transition on a Highly Loaded Low-Pressure Turbine Airfoil—Part 2: High Freestream Turbulence Intensity
,”
ASME
Paper No. IMECE2008-68776.
17.
Volino
,
R. J.
,
2010
, “
Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
(
1
), p.
011007
.
18.
Bons
,
J. P.
,
Pluim
,
J.
,
Gompertz
,
K.
,
Bloxham
,
M.
, and
Clark
,
J. P.
,
2012
, “
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
,”
ASME J. Turbomach.
,
134
(
3
), p.
031009
.
19.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
(
1
), pp.
1
13
.
20.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
21.
Wernz
,
S.
,
Ringwald
,
H.
, and
Fasel
,
H. F.
,
2006
, “
Numerical Investigation of Instabilities in Three-Dimensional Skewed Shear Layers
,”
AIAA
Paper No. 2006-3347.
22.
Talan
,
M.
, and
Hourmouzaidis
,
J.
,
2002
, “
Characteristic Regimes of Transitional Separation Bubbles in Unsteady Flow
,”
Flow, Turbul. Combust.
,
69
(3), pp.
207
227
.
23.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2006
, “
Separation Bubble Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
ASME
Paper No. GT2005-68663.
You do not currently have access to this content.