Adiabatic film cooling effectiveness contours are obtained experimentally with the use of temperature sensitive paint (TSP) on low thermal conductivity film cooled surfaces. The effects of blowing ratio, surface angle, and hole spacing are observed by testing four full-coverage arrays composed of cylindrical staggered holes all compounded at 45 deg, which parametrically vary the inclination angles, 30 deg and 45 deg, and the spacing of the holes 14.5 and 19.8 times the diameter. Local film cooling effectiveness is obtained throughout these largely spaced arrays to 23 rows for the 19.8 diameter spacing array and 30 rows for the 14.5 diameter spacing array. The coolant takes several rows to merge and begin to interact with lateral holes at these large spacings; however, at downstream rows the film merges laterally and provides high effectiveness in the gaps between injections. At low blowing, each individual jet remains discrete throughout the array. At higher blowing rates, the profile is far more uniform due to jets spreading as they reattach with the wall. Laterally averaged values of effectiveness approach 0.3 in most cases with some high blowing low spacing, even reaching 0.5.

References

References
1.
Mayle
,
M. E.
, and
Camarata
,
F. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
534
538
.
2.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
3.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2456
.
4.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1980
, “
Full-Coverage Film Cooling Part I: Comparison of Heat Transfer Data for Three Injection Angles
,”
ASME J. Eng. Power
,
102
(
4
), pp.
1000
1005
.
5.
Kasagi
,
N.
,
Hirata
,
M.
, and
Kumada
,
M.
,
1981
, “
Studies of Full-Coverage Film Cooling Part 1: Cooling Effectiveness of Thermally Conductive Wall
,”
ASME
Paper No. 81-GT-37.
6.
Andrews
,
G. E.
,
Khalifa
, I
. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
,
1995
, “
Full Coverage Effusion Cooling With Inclined Holes
,”
ASME
Paper No. ASME95-GT-274.
7.
Andrews
,
G. E.
,
Gupta
,
M.
, and
Mkpadi
,
M.
,
1984
, “
Full Coverage Discrete Hole Wall Cooling: Cooling Effectiveness
,”
ASME
Paper No. 84-GT-212.
8.
Cerri
,
G.
,
Giovannelli
,
A.
,
Barristi
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.
9.
Gustafsson
,
B.
,
2001
, “
Experimental Studies of Effusion Cooling
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.
10.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Full-Coverage Film Cooling Investigation: Adiabatic Wall Temperatures and Flow Visualization
,”
ASME
Paper No. 95-WA/HT-4.
11.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME
Paper No. GT2004-54043.
12.
Ling
,
J. P.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2002
, “
Full Coverage Film Cooling for Combustor Transition Sections
,”
ASME
Paper No. 2002-GT-30528.
13.
Kelly
,
G. B.
, and
Bogard
,
D. G.
,
2003
, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,”
ASME
Paper No. GT2003-38716.
14.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
15.
Michel
,
B.
,
Gajan
,
P.
,
Strzelecki
,
A.
,
Savary
,
N.
,
Kourta
,
A.
, and
Boisson
,
H.-C.
,
2009
, “
Full Coverage Film Cooling Using Compound Angle
,”
C. R. Mec.
,
337
(
6–7
), pp.
562
572
.
16.
Ligrani
,
P.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2012
. “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
,
134
(
6
), p.
061039
.
17.
Andreini
,
A.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Turrini
,
F.
,
2014
, “
Experimental and Theoretical Investigation of Thermal Effectiveness in Multiperforated Plates for Combustor Liner Effusion Cooling
,”
ASME J. Turbomach.
,
136
(
9
), p.
091003
.
18.
Guo
,
J.
,
Julien
,
P. Y.
, and
Meroney
,
R. N.
,
2005
, “
A Modified Log-Wake Law for Zero-Pressure-Gradient Turbulent Boundary Layers
,”
J. Hydraul. Res.
,
43
(
4
), pp.
421
430
.
19.
van Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
,
23
(
11
), pp.
1007
1011
.
20.
Liu
,
Q.
,
2006
, “
Study of Heat Transfer Characteristics of Impinging Air Jet Using Pressure and Temperature Sensitive Luminescent Paint
,”
Ph.D. thesis
, University of Central Florida, Orlando, FL.
21.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
You do not currently have access to this content.