The focus of the study presented here was to investigate the interaction between the blade and downstream vane of a stage-and-one-half transonic turbine via computation fluid dynamic (CFD) analysis and experimental data. A Reynolds-averaged Navier–Stokes (RANS) flow solver with the two-equation Wilcox 1998 k–ω turbulence model was used as the numerical analysis tool for comparison with all of the experiments conducted. The rigor and fidelity of both the experimental tests and numerical analysis methods were built through two- and three-dimensional steady-state comparisons, leading to three-dimensional time-accurate comparisons. This was accomplished by first testing the midspan and quarter-tip two-dimensional geometries of the blade in a linear transonic cascade. The effects of varying the incidence angle and pressure ratio on the pressure distribution were captured both numerically and experimentally. This was used during the stage-and-one-half post-test analysis to confirm that the target corrected speed and pressure ratio were achieved. Then, in a full annulus facility, the first vane itself was tested in order to characterize the flowfield exiting the vane that would be provided to the blade row during the rotating experiments. Finally, the full stage-and-one-half transonic turbine was tested in the full annulus cascade with a data resolution not seen in any studies to date. A rigorous convergence study was conducted in order to sufficiently model the flow physics of the transonic turbine. The surface pressure traces and the discrete Fourier transforms (DFT) thereof were compared to the numerical analysis. Shock trajectories were tracked through the use of two-point space–time correlation coefficients. Very good agreement was seen when comparing the numerical analysis to the experimental data. The unsteady interaction between the blade and downstream vane was well captured in the numerical analysis.

References

References
1.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
,
2009
, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,”
WPAFB
,
Dayton, OH
, AFRL Report No. AFRL-RZ-WP-TR-2009-2180.
2.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Anthony
,
R. J.
,
Lemaire
,
R. P.
,
Kennedy
,
S. W.
,
White
,
A. L.
,
Finnegan
,
J. M.
,
Kobelak
,
M. D.
,
Johnson
,
P. D.
,
Huber
,
F.
,
Downs
,
J.
, and
Hendershot
,
J.
,
2010
, “
The High Impact Technologies Research Turbine, Build 1
,”
WPAFB
,
Dayton, OH
, AFRL Report No. AFRL-RZ-WP-TR-2010-2262.
3.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Magge
,
S. S.
, and
Price
,
F. R.
,
2002
, “
Using CFD to Reduce Resonant Stresses on a Single-Stage, High-Pressure Turbine Blade
,”
ASME
Paper No. GT2002-30320.
4.
Ashworth
,
D. A.
,
LaGraff
,
J. E.
,
Schultz
,
D. L.
, and
Grindrod
,
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME J. Eng. Gas Turbines and Power
,
107
(
4
), pp.
1022
1030
.
5.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
6.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
(
4
), pp.
729
742
.
7.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, Jr.
,
1995
, “
Phase-Resolved Surface Pressure and Heat-Transfer Measurements on the Blade of a Two-Stage Turbine
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
653
658
.
8.
Rai
,
M. M.
,
1987
, “
Navier–Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
AIAA J. Propul. Power
,
3
(
5
), pp.
387
396
.
9.
Rai
,
M. M.
,
1987
, “
Unsteady Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction
,”
AIAA
Paper No. 87-2058.
10.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
AIAA J. Propul. Power
,
6
(
5
), pp.
621
627
.
11.
Dunn
,
M. G.
,
Bennett
,
W. A.
,
Delaney
,
R. A.
, and
Rao
,
K. V.
,
1992
, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
91
99
.
12.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane-Blade Interaction in a Transonic Turbine, Part 1: Aerodynamics
,”
ASME J. Propul. Power
,
10
(
3
), pp.
305
311
.
13.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
,
1992
, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
.
14.
Davis
,
R. L.
,
Yao
,
J.
,
Clark
,
J. P.
,
Stetson
,
G.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2004
, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rotat. Mach.
,
10
(
6
), pp.
495
506
.
15.
Paniagua
,
G.
, and
Denos
,
R.
,
2007
, “
Unsteadiness in HP Turbines
,”
Advances in Turbomachinery Aero-Thermo-Mechanical Design Analysis
(VKI Lecture Series 2007-02),
von Karman Institute, Rhode-Saint-Genèse
,
Belgium
.
16.
Ni
,
R. H.
,
Humber
,
W.
,
Fan
,
G.
,
Clark
,
J. P.
,
Anthony
,
R. J.
, and
Johnson
,
J. J.
,
2011
, “
Comparison of Predictions From Conjugate Heat Transfer Analysis of a Film-Cooled Turbine Vane to Experimental Data
,”
ASME
Paper No. GT2013-94716.
17.
Ooten
,
M. K.
,
2014
, “
Unsteady Aerodynamic Interaction in a Closely-Coupled Turbine Consistent With Contra-Rotation
,” M.S. thesis, University of Dayton, Dayton, OH.
18.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
ASME
Paper No. GT2013-94741.
19.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Kennedy
,
S. W.
,
Finnegan
,
J. M.
,
Johnson
,
P. D.
,
Hendershot
,
J.
, and
Downs
,
J.
,
2011
, “
Flexible Non-Intrusive Heat Flux Instrumentation on the AFRL Research Turbine
,”
ASME
Paper No. GT2011-46853.
20.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
, and
Johnson
,
P. D.
,
2012
, “
Modifications and Upgrades to the AFRL Turbine Research Facility
,”
ASME
Paper No. GT2012-70084.
21.
Polanka
,
M. D.
,
Clark
,
J. P.
,
White
,
A. L.
,
Meininger
,
M.
, and
Praisner
,
T. J.
,
2013
, “
Turbine Tip and Shroud Heat Transfer and Loading, Part B: Comparisons Between Prediction and Experiment Including Unsteady Effects
,”
ASME
Paper No. GT2003-38916.
22.
AIAA
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,”
AIAA
Paper No. G-077-1998.
23.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
24.
Sonntag
,
R. E.
,
Borgnakke
,
C.
, and
Van Wylen
,
G. J.
,
2003
,
Fundamentals of Thermodynamics
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.