In the present study, an application for efficient cooling of turbine liner segments employing pulsating impinging jets was investigated. A combined numerical and experimental study was conducted to evaluate the design of a case cavity device which utilizes the periodically unsteady pressure distribution caused by the rotor blades to excite a pulsating impinging jet. Through an opening between the main annulus and a case cavity, pressure pulses from the rotor blades propagated into this cavity and caused a strong pressure oscillation inside. The unsteady computational fluid dynamics (CFD) results were in good qualitative agreement with the measurement data obtained using high-frequency pressure transducers and hot wire anemometry. Furthermore, the numerical study revealed the formation of distinct toroidal vortex structures at the nozzle outlet as a result of the jet pulsation. Within the scope of the measurements, the influence of the operating point on the pressure propagation inside the cavity was investigated. The dependence of shape and amplitude of the pressure oscillation on engine speed and stage pressure ratio was found to be in accordance with an analytical consideration.

References

References
1.
Donaldson
,
C. D.
, and
Snedeker
,
R. S.
,
1971
, “
A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
(
2
), pp.
281
319
.
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
3.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
4.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
5.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
6.
Uddin
,
N.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2013
, “
LES Simulations of an Impinging Jet: On the Origin of the Second Peak in the Nusselt Number Distribution
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
356
368
.
7.
Hofmann
,
H. M.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Measurements on Steady State Heat Transfer and Flow Structure and New Correlations for Heat and Mass Transfer in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3957
3965
.
8.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
9.
Nevins
,
R.
, and
Ball
,
H.
,
1961
, “
Heat Transfer Between a Flat Plate and a Pulsating Impinging Jet
,”
National Heat Transfer Conference
, Boulder, CO, Aug. 28–Sept. 1, Vol.
60
, pp.
510
516
.
10.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
91
98
.
11.
Sailor
,
D. J.
,
Rohli
,
D. J.
, and
Fu
,
Q.
,
1999
, “
Effect of Variable Duty Cycle Flow Pulsations on Heat Transfer Enhancement for an Impinging Air Jet
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
574
580
.
12.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.
13.
Camci
,
C.
, and
Herr
,
F.
,
2002
, “
Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
770
782
.
14.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.
15.
Zulkifli
,
R.
,
Sopian
,
K.
,
Abdullah
,
S.
, and
Takriff
,
M. S.
,
2009
, “
Comparison of Local Nusselt Number for Steady and Pulsating Circular Jet at Reynolds Number of 16000
,”
Eur. J. Sci. Res.
,
29
(
3
), pp.
369
378
.
16.
Xu
,
P.
,
Mujumdar
,
A. S.
,
Poh
,
H. J.
, and
Yu
,
B.
,
2010
, “
Heat Transfer Under a Pulsed Slot Turbulent Impinging Jet at Large Temperature Differences
,”
Int. J. Therm. Sci.
,
14
(
1
), pp.
271
281
.
17.
Eibeck
,
R. A.
,
Keller
,
J. O.
,
Bramlette
,
T. T.
, and
Sailor
,
D. J.
,
1993
, “
Pulse Combustion: Impinging Jet Heat Transfer Enhancement
,”
Combust. Sci. Technol.
,
94
(
1–6
), pp.
147
165
.
18.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Täge
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
45
(
2
), pp.
193
206
.
19.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Numerical Study of Interrupted Impinging Jets for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
275
284
.
20.
Schulze
,
G.
,
Blaha
,
C.
,
Hennecke
,
D. K.
, and
Henne
,
J. M.
,
1995
, “
The Performance of a New Axial Single Stage Transonic Compressor
,”
12th International Symposium on Air Breathing Engines
(
ISABE
), Melbourne, Australia, Sept. 10–15, pp.
783
792
.
21.
Wartzek
,
F.
,
Brandstetter
,
C.
,
Holzinger
,
F.
, and
Schiffer
,
H.-P.
,
2015
, “
Response of a Transonic Compressor to a Massive Inlet Distortion
,”
European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Paper No. ETC2015-086.
22.
2011
,
Instruction Manual
, Bronkhorst High-Tech
B.V., Ruurlo
,
Netherlands
.
23.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow, Turbul. Combust.
,
85
(
1
), pp.
113
138
.
24.
Menter, F. R.
,
2011
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,
ANSYS Inc.
,
Canonsburg, PA
.
25.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.
26.
2011,
ANSYS Fluent Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
27.
Egorov
,
Y.
,
Menter
,
F. R.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
Flow, Turbul. Combust.
,
85
(
1
), pp.
139
165
.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Reising
,
S.
,
2011
, “
Steady and Unsteady Performance of a Transonic Compressor Stage With Non-Axisymmetric End Walls
,”
Ph.D. thesis
, TU Darmstadt, Darmstadt, Germany.
30.
2011,
ANSYS Fluent User's Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
31.
Bergner
,
J.
,
Kinzel
,
M.
,
Schiffer
,
H.-P.
, and
Hah
,
C.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Experimental Investigation
,”
ASME
Paper No. GT2006-90209.
32.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases
, Center for Turbulence Research, Summer Program, Stanford University, Stanford, CA, Vol.
1
, pp.
193
208
.
You do not currently have access to this content.