Integrally cast turbine airfoils with wall-integrated cooling cavities are greatly applicable in modern turbines providing enhanced heat exchange capabilities compared to conventional cooling passages. In such arrangements, narrow impingement channels can be formed where the generated crossflow is an important design parameter for the achievement of the desired cooling efficiency. In this study, a regulation of the generated crossflow for a narrow impingement channel consisting of a single row of five inline jets is obtained by varying the width of the channel in the streamwise direction. A divergent impingement channel is therefore investigated and compared to a uniform channel of the same open area ratio. Flow field and wall heat transfer experiments are carried out at engine representative Reynolds numbers using particle image velocimetry (PIV) and liquid crystal thermography (LCT). The PIV measurements are taken at planes normal to the target wall along the centerline for each individual jet, providing quantitative flow visualization of jet and crossflow interactions. The heat transfer distributions on the target plate of the channels are evaluated with transient techniques and a multilayer of liquid crystals (LCs). Effects of channel divergence are investigated combining both the heat transfer and flow field measurements. The applicability of existing heat transfer correlations for uniform jet arrays to divergent geometries is also discussed.

References

References
1.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
ASME
Paper No. GT2013-94277.
2.
Liang
,
G.
,
2013
, “
Turbine Stator Vane With Near Wall Integrated Micro Cooling Channels
,” U.S. Patent No. 8,414,263 B1.
3.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal-Gas-Based Power Generation Systems
,”
ASME J. Heat Transfer
,
41
(
7
), pp.
737
752
.
4.
Dailey
,
G. M.
,
Evans
,
P. A.
, and
McCall
,
R. A. B.
,
2001
, “
Cooled Aerofoil for a Gas Turbine Engine
,” U.S. Patent No. 6,264,428 B1.
5.
Lutum
,
E.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2002
, “
Cooled Blade for a Gas Turbine
,” U.S. Patent No. 6,379,118 B2.
6.
Lee
,
C.-P.
, and
Bunker
,
R. S.
,
2006
, “
Thermal Shield Turbine Airfoil
,” U.S. Patent No. 7,011,502 B2.
7.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.
8.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.
9.
Ieronymidis
,
I.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2010
, “
Detailed Heat Transfer Measurements in a Model of an Integrally Cast Cooling Passage
,”
ASME J. Turbomach.
,
132
(
2
), p.
021002
.
10.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Turbomach.
,
136
(
7
), p.
071701
.
11.
Terzis
,
A
.,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Integrally Cast Turbine Airfoils
,” Ph.D. thesis, Swiss Federal Institute of Technology, EPFL, Lausanne, Switzerland, Thesis No. 6177.
12.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
13.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
14.
Ricklick
,
M.
,
Kapat
,
J. S.
, and
Heidmann
,
J. D.
,
2010
, “
Sidewall Effects on Heat Transfer Coefficient in a Narrow Impingement Channel
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
123
132
.
15.
Stoakes
,
P.
, and
Ekkad
,
S. V.
,
2011
, “
Optimized Impingement Configurations for Double Wall Cooling Applications
,”
ASME
Paper No. GT2011-46143.
16.
Llucià
,
S.
,
Terzis
,
A.
,
Ott
,
P.
, and
Cochet
,
M.
,
2015
, “
Heat Transfer Characteristics of High Crossflow Impingement Channels: Effect of Number of Holes
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
5
), pp.
560
568
.
17.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.
18.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.
19.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.
20.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2010
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021001
.
21.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Rotation on Heat Transfer for a Single Row Jet Impingement Array With Crossflow
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082202
.
22.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.
23.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomachinery
,
136
(
9
), p.
091011
.
24.
Hossain
,
J.
,
Tran
,
L. V.
,
Kapat
,
J. S.
,
Fernandez
,
E.
, and
Kumar
,
R.
,
2014
, “
An Experimental Study of Detailed Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel
,”
ASME
Paper No. GT2014-26498.
25.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1208
1219
.
26.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
,
2013
, “
Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet
,”
Int. J. Heat Mass Transfer
,
65
, pp.
873
882
.
27.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
28.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.
29.
Camci
,
C.
,
Kim
,
K.
,
Hippensteele
,
S. A.
, and
Poinsatte
,
P. E.
,
1993
, “
Evaluation of a Hue Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces
,”
ASME J. Heat Transfer
,
115
(
2
), pp.
311
318
.
30.
Terzis
,
A.
,
Bontitsopoulos
,
S.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
, and
Kalfas
,
A. I.
, “
Improved Accuracy in Jet Impingement Heat Transfer Experiments Considering the Layer Thicknesses of a Triple Thermochromic Liquid Crystal Coating
,”
ASME J. Turbomach.
,
138
(2), p. 021003.
31.
Pountney
,
O.
,
Cho
,
G.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2012
, “
Solutions of Fourier's Equation Appropriate for Experiments Using Thermochromic Liquid Crystal
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5908
5915
.
32.
Schulz
,
S.
,
Brack
,
S.
,
Terzis
,
A.
,
von Wolfersdorf
,
J.
, and
Ott
,
P.
,
2016
, “
On the Effects of Coating Thickness in Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
196
207
.
33.
Kwak
,
J. S.
,
2008
, “
Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
290
295
.
34.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.
35.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
The Effect of Sample Size, Turbulence Intensity and the Velocity Field on the Experimental Accuracy of Ensemble Averaged PIV Measurements
,”
4th International Symposium on Particle Image Velocimetry
, Göttingen, Germany, Sept. 17–19, Paper No. 1096.
36.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
ASME J. Eng. Power
,
105
(
2
), pp.
296
304
.
37.
Hüning
,
M.
,
2010
, “
Comparison of Discharge Coefficient Measurements and Correlations for Orifices With Cross-Flow and Rotation
,”
ASME J. Turbomach.
,
132
(
3
), p.
031017
.
38.
Bouchez
,
J. P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.
39.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.
40.
Gritsch
,
M.
,
Schonwalder
,
D.
, and
Estaun-Echavarren
,
C.
,
2006
, “
Thermal Performance of Enhanced Combustor Liner Impingement Cooling Systems
,” 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-11), Honolulu, HI, Feb. 26–Mar. 2, Paper No. 50.
You do not currently have access to this content.