Researchers in gas turbine field take great interest in the cooling performance on the first-stage vane because of the complex flow characteristics and intensive heat load that comes from the exit of the combustion chamber. A better understanding is needed on how the coolant flow interacts with the mainstream and the resulting cooling effect in the real engine especially for the first-stage vane. An authentic flow channel and condition should be achieved. In this study, three full-scale turbine vanes are used to construct an annular-sector cascade. The film-cooling design is attained through numerous layback fan-shaped and cylindrical holes dispersed on the vane and both endwalls. With the three-dimensional vane geometry and corresponding wind tunnel design, the true flow field can thus be simulated as in the engine. This study targets the film-cooling effectiveness on the inner endwall (hub) of turbine vane. Tests are performed under the mainstream Reynolds number 350,000; the related inlet Mach number is 0.09; and the freestream turbulence intensity is 8%. Two variables, coolant-to-mainstream mass flow ratios (MFR = 2%, 3%, and 4%) and density ratios (DR = 1.0 and 1.5), are examined. Pressure-sensitive paint (PSP) technique is utilized to capture the detail contour of film-cooling effectiveness on the inner endwall and demonstrate the coolant trace. The presented results serve as a comparison basis for other sets of vanes with different cooling designs. The results are expected to strengthen the promise of PSP technique on evaluating the film-cooling performance of the engine geometries.

References

References
1.
Brooks
,
F. J.
,
1994
,
GE Gas Turbine Performance Characteristics
,
GE Power Systems
,
Schenectady, NY
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
, Vol.
7
,
T. F.
Irvine
, Jr.
and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
321
379
.
4.
Han
,
J. C.
, and
Ekkad
,
S.
,
2001
, “
Recent Development in Turbine Blade Film Cooling
,”
Int. J. Rotating Mach.
,
7
(
1
), pp.
21
40
.
5.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
6.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
7.
Ekkad
,
S.
, and
Han
,
J. C.
,
2013
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
ASME
Paper No. HT2013-17250.
8.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
9.
Ligrani
,
P. M.
,
Wigle
,
J. M.
, and
Jackson
,
S. W.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 2—Results Downstream of a Single Row of Holes With 6D Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
353
362
.
10.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
11.
Berhe
,
M. K.
, and
Patankar
,
S. V.
,
1999
, “
Curvature Effects on Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
781
791
.
12.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
13.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
14.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
15.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
16.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
17.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
18.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
19.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2014
, “
Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique
,”
ASME
Paper No. GT2014-26232.
20.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2013
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
21.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
22.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081701
.
23.
Li
,
S. J.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
), p.
061026
.
24.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film-Cooling With Stator–Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
25.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
26.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.
27.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Gas Turbines Power
,
102
(
2
), pp.
257
267
.
28.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
29.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
.
30.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.
31.
Kwak
,
J. S.
,
Lee
,
J. H.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Vane End-Wall
,”
12th International Heat Transfer Conference
,
Grenoble, France
, Vol. 4, pp.
693
698
.
32.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental-Study of Heat-Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.
33.
Harasgama
,
S. P.
, and
Burton
,
C. D.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
.
34.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
.
35.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.
36.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
End-Wall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,”
ASME J. Turbomach.
,
129
(
2
), pp.
212
220
.
37.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator–Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.
38.
Mahmood
,
G. I.
,
Ross
,
G.
, and
Sumanta
,
A.
,
2009
, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
ASME
Paper No. GT2009-60236.
39.
Luque
,
S.
, and
Povey
,
T.
,
2010
, “
A Novel Technique for Assessing Turbine Cooling System Performance
,”
ASME J. Turbomach.
,
133
(
3
), p.
031013
.
40.
Andrei
,
L.
,
Facchini
,
B.
,
Caciolli
,
G.
,
Picchi
,
A.
,
Tarchi
,
L.
,
D'Ercole
,
M.
,
Innocenti
,
L.
, and
Russo
,
A.
,
2014
, “
Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions
,”
ASME
Paper No. GT2014-26894.
41.
Baines
,
W. D.
, and
Peterson
,
E. G.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. ASME
,
73
, pp.
467
480
.
42.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
You do not currently have access to this content.