This paper presents a study on low-pressure (LP) turbine bending flutter. The study is performed using a semi-analytical model, which is validated against experimental and computational fluid dynamics (CFD) data. The validation highlights the ability of even the simplest models to represent accurately the flutter behavior of the LP turbine assemblies. A parametric study is then performed into the effect of modifications of the blade camber line on the stability of bending modes. Variations in maximum camber position, leading edge and trailing edge metal angles, and stagger are considered. The modifications are applied to a family of aerodynamically well designed aerofoils and to a family of aerodynamically poorly designed aerofoils. Trends relating damping to the parameters describing the camber line modifications are identified. These trends are found to apply to both families of aerofoils. Furthermore, it is found that the behavior of all aerofoils studied can be characterized by their behavior at a specific flow angle and by a simple algebraic relation based on true incidence. This behavior also seems to be universal.

References

References
1.
Atassi
,
H.
, and
Akai
,
T. J.
,
1978
, “
Effect of Blade Loading and Thickness on the Aerodynamics of Oscillating Cascades
,”
AIAA
16th Aerospace Meeting
, pp.
78
227
.
2.
Panovsky
,
J.
, and
Kielb
,
R. E.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
.
3.
Bernardini
,
C.
,
Carnevale
,
M.
,
Manna
,
M.
,
Martelli
,
F.
,
Simoni
,
D.
, and
Zunino
,
P.
,
2012
, “
Turbine Blade Boundary Layer Separation Suppression Via Synthetic Jet: An Experimental and Numerical Study
,”
J. Therm. Sci.
,
21
(
5
), pp.
404
412
.
4.
Whitehead
,
D. F.
,
1692
, “
Force and Moment Coefficients for Vibrating Aerofoils in Cascade
,” Aeronautical Research Council Reports and Memoranda,
Report No. 3254
.
5.
Atassi
,
H.
, and
Akai
,
T. J.
,
1980
, “
Aerodynamic and Aeroelastic Characteristics of Oscillating Loaded Cascades at Low Mach Number, Part 2: Stability and Flutter Boundaries
,”
ASME J. Eng. Gas Turbines Power
,
102
(
2
), pp.
352
356
.
6.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1980
, “
A Subsonic Flow Past an Oscillating Cascade With Finite Mean Flow Deflection
,”
AIAA J.
,
18
(
5
), pp.
540
548
.
7.
Nowinski
,
M.
, and
Panovsky
,
J.
,
1999
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.
8.
Kielb
,
R.
,
Barter
,
J.
,
Chernycheva
,
O.
, and
Fransson
,
T.
,
2004
, “
Flutter of Low Pressure Turbine Blades With Cyclic Symmetric Modes: A Preliminary Design Method
,”
ASME J. Turbomach.
,
126
(
2
), pp.
306
309
.
9.
Arnone
,
A.
,
Poli
,
F.
, and
Schipani
,
C.
,
2006
, “
A Method to Assess Flutter Stability of Complex Modes
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer, Dordrecht
,
The Netherlands
.
10.
Vega
,
A.
, and
Corral
,
R.
,
2013
, “
Physics of Vibrating Airfoils at Low Reduced Frequency
,”
ASME
Paper No. GT2013-94906.
11.
Chernycheva
,
O.
,
Torsten
,
H. F.
,
Kielb
,
R.
, and
Barter
,
R. E.
,
2006
, “
Influence of a Vibration Amplitude Distribution on the Aerodynamic Stability of a Low-Pressure-Turbine Sectored Vane
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer, Dordrecht
,
The Netherlands
.
12.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
.
13.
Vega
,
A.
,
Corral
,
R.
,
Zanker
,
A.
, and
Ott
,
P.
,
2014
, “
Experimental and Numerical Assessment of the Aeroelastic Stability of Blade Pair Packages
,”
ASME
Paper No. GT2014-25607.
14.
Mcfarland
,
E. R.
,
1982
, “
Solution of Plane Cascade Flow Using Improved Surface Singularity Methods
,”
ASME J. Eng. Gas Turbines Power
,
104
(
3
), pp.
668
674
.
15.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines Comparison of Theoretical and Experimental Cascade Results
,” Communication du Laboratoire de Thermique Applique et de Turbomachines de l'ecole Polytechnique Federale de Lausanne EPFL,
Report No. 13
.
16.
18.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Solution of Plane Cascade Flow Using Improved Surface Singularity Methods
,”
AIAA J.
,
38
(
6
), pp.
945
954
.
19.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes
,”
AIAA
Paper No. AIAA-81-1259.
20.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. AIAA-92-0439.
21.
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part I: Formulation
,”
J. Fluids Struct.
,
14
(
1
), pp.
87
101
.
22.
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part II: Case Studies
,”
J. Fluids Struct.
,
14
(
1
), pp.
103
125
.
You do not currently have access to this content.