A semi-empirical model for the estimation of the Kelvin–Helmholtz (KH) instability frequency, in the case of short laminar separation bubbles over airfoils, has been developed. To this end, the Thwaites's pressure gradient parameter has been adopted to account for the effects induced by the aerodynamic loading distribution as well as by the Reynolds number on the separated shear layer thickness at separation. The most amplified frequency predicted by linear stability theory (LST) for a piecewise linear profile, which can be considered as the KH instability frequency, has been related to the shear layer thickness at separation, hence to the Reynolds number and the aerodynamic loading distribution through the Thwaites's pressure gradient parameter. This procedure allows the formulation of a functional dependency between the Strouhal number of the shedding frequency based on exit conditions and the dimensionless parameters. Experimental results obtained in different test cases, characterized by different Reynolds numbers and aerodynamic loading distributions, have been used to validate the model, as well as to identify the regression curve best fitting the data. The semi-empirical correlation here derived can be useful to set the activation frequency of active flow control devices for the optimization of boundary layer separation control strategies.

References

1.
Hain
,
R.
,
Kähler
,
C.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
2.
Marxen
,
O.
,
Lang
,
M.
,
Rist
,
U.
, and
Wagner
,
S.
,
2003
, “
A Combined Experimental/Numerical Study of Unsteady Phenomena in a Laminar Separation Bubble
,”
Flow, Turbul. Combust.
,
71
(
1–4
), pp.
133
146
.
3.
Yang
,
Z.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.
4.
Marxen
,
O.
, and
Henningson
,
D. S.
,
2011
, “
The Effect of Small-Amplitude Convective Disturbances on the Size and Bursting of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
671
, pp.
1
33
.
5.
Yarusevych
,
S.
,
Kawall
,
J. G.
, and
Sullivan
,
P. E.
,
2008
, “
Separated-Shear-Layer Development on an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
46
(
12
), pp.
3060
3069
.
6.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
7.
Burgmann
,
S.
, and
Schröder
,
W.
,
2008
, “
Investigation of the Vortex Induced Unsteadiness of a Separation Bubble Via Time-Resolved and Scanning PIV Measurements
,”
Exp. Fluids
,
45
(
4
), pp.
675
691
.
8.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Lengani
,
D.
, and
Bertini
,
F.
,
2012
, “
An Experimental Investigation of the Separated-Flow Transition Under High-Lift Turbine Blade Pressure Gradients
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
45
62
.
9.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
.
10.
Monkewitz
,
P. A.
, and
Huerre
,
P.
,
1982
, “
The Influence of the Velocity Ratio on the Spatial Instability of Mixing Layers
,”
Phys. Fluids
,
25
(
7
), pp.
1137
1143
.
11.
Langari
,
M.
, and
Yang
,
Z.
,
2013
, “
Numerical Study of the Primary Instability in a Separated Boundary Layer Transition Under Elevated Free-Stream Turbulence
,”
Phys. Fluids
,
25
(
7
), p.
074106
.
12.
Diwan
,
S. S.
, and
Ramesh
,
O.
,
2009
, “
On the Origin of the Inflectional Instability of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
629
, pp.
263
298
.
13.
Bernardini
,
C.
,
Benton
,
S. L.
,
Chen
,
J.
, and
Bons
,
J. P.
,
2014
, “
Exploitation of Subharmonics for Separated Shear Layer Control on a High-Lift Low-Pressure Turbine Using Acoustic Forcing
,”
ASME J. Turbomach.
,
136
(
5
), p.
051018
.
14.
Boutilier
,
M.
, and
Yarusevych
,
S.
,
2012
, “
Parametric Study of Separation and Transition Characteristics Over an Airfoil at Low Reynolds Numbers
,”
Exp. Fluids
,
52
(
6
), pp.
1491
1506
.
15.
Bons
,
J. P.
,
Reimann
,
D.
, and
Bloxham
,
M.
,
2008
, “
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
,”
ASME J. Turbomach.
,
130
(
2
), p.
021014
.
16.
Kurz
,
A.
,
Goldin
,
N.
,
King
,
R.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2013
, “
Hybrid Transition Control Approach for Plasma Actuators
,”
Exp. Fluids
,
54
(
11
), p.
1610
.
17.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2011
, “
Application of a Synthetic Jet to Control Boundary Layer Separation Under Ultra-High-Lift Turbine Pressure Distribution
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
597
616
.
18.
Lin
,
J. C. M.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.
19.
Theofilis
,
V.
,
2003
, “
Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows
,”
Prog. Aerosp. Sci.
,
39
(
4
), pp.
249
315
.
20.
Graveline
,
J. R.
, and
Sjolander
,
S. A.
,
2013
, “
A Spectral Study of a Moderately Loaded Low-Pressure Turbine Airfoil—Part I: Identifying Frequencies Affecting Bypass Transition
,”
ASME J. Turbomach.
,
135
(
4
), p.
041016
.
21.
Volino
,
R. J.
, and
Hultgren
,
L. S.
,
2001
, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
189
197
.
22.
Hourmouziadis
,
J.
,
1980
, “
Aerodynamic Design of Low Pressure Turbines
,”
AGARD Lect. Ser.
,
167
, pp.
8
40
.
23.
Dähnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2013
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.
24.
Lazaro
,
B. J.
,
Gonzalez
,
E.
, and
Vazquez
,
R.
,
2008
, “
Temporal Structure of the Boundary Layer in Low Reynolds Number, Low Pressure Turbine Profiles
,”
ASME
Paper No. GT-2008-50616.
25.
Häggmark
,
C. P.
,
Hildings
,
C.
, and
Henningson
,
D. S.
,
2001
, “
A Numerical and Experimental Study of a Transitional Separation Bubble
,”
Aerosp. Sci. Technol.
,
5
(
5
), pp.
317
328
.
26.
Bernardini
,
C.
,
Benton
,
S. L.
, and
Bons
,
J. P.
,
2013
, “
The Effect of Acoustic Excitation on Boundary Layer Separation of a Highly Loaded LPT Blade
,”
ASME J. Turbomach.
,
135
(
5
), p.
051001
.
27.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2012
, “
Loss Production Mechanisms in a Laminar Separation Bubble
,”
Flow, Turbul. Combust.
,
89
(
4
), pp.
547
562
.
28.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2012
, “
Transition Mechanisms in Laminar Separation Bubbles With and Without Incoming Wakes and Synthetic Jet Effects
,”
Exp. Fluids
,
53
(
1
), pp.
173
186
.
29.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2014
, “
Loading Distribution Effects on Separated Flow Transition of Ultra-High-Lift Turbine Blades: Steady and Unsteady Inflows
,”
AIAA J. Propul. Power
,
30
(
3
), pp.
845
856
.
30.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2010
, “
Experimental Investigation of Separation and Transition Processes on a High-Lift Low Pressure Turbine Profile Under Steady and Unsteady Inflow at Low Reynolds Number
,”
J. Therm. Sci.
,
19
(
1
), pp.
26
33
.
31.
Gaster
,
M.
,
1966
, “
The Structure and Behaviour of Laminar Separation Bubbles
,”
AGARD CP4 Part
,
2
, pp.
813
854
.
You do not currently have access to this content.