An unsteady computational study was carried out on GE-E3 high pressure (HP) turbine at inflow turbulence intensities of 5%, 10%, and 20% accompanying with inlet hot streak (HS) at two circumferential positions (impinging and nonimpinging relative to vane leading edge) to analyze the interacted turbulence and HS influences. Turbulence decay mechanisms in turbine passage were presented, and the airfoil heat transfer behaviors were explored by means of adiabatic wall temperature, heat transfer coefficient (HTC), and wall heat flux. The results indicate that the elevated turbulence leads to favorable turbine airfoil temperature distributions, and turbulence induced HS attenuation mainly occurs in vane passage. In addition, the HS dispersion is related directly to the temperature gradients. Although the endwall temperature increases by more than 20 K (2.8% inlet mass-averaged temperature) and midregion temperature decreases by 16 K at blade leading edge, the hot region on blade pressure surface (PS) is only weakened by about 7 K, when turbulence intensity is increased from 5% to 20%. Higher turbulence significantly affects the airfoil HTC, excepting the regions secondary and leakage flow effects are dominating. Therefore, the tip and blade suction surface (SS) trailing edge heat flux is decreased for the temperature decline at higher turbulence, which is beneficial to tip cooling. HS position not only affects the airfoil surface temperature variations but also slightly affects the vane and blade midspan HTC for the variation of heat transfer driving temperature.

References

References
1.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
AIAA J. Propul. Power
,
5
(
1
), pp.
64
71
.
2.
Shang
,
T. H.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
3.
Ong
,
J.
, and
Miller
,
R. J.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
.
4.
Smith
,
C. I.
,
Chang
,
D.
, and
Tavoularis
,
S.
,
2012
, “
Effect of Inlet Temperature Non-Uniformity on High-Pressure Turbine Performance
,”
ASME
Paper No. GT2010-22845.
5.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2007
, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
AIAA J. Propul. Power
,
23
(
6
), pp.
1235
1241
.
6.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
2000
, “
Effects of Radial Location on the Migration of Hot Streak in a 1-1/2 Stage Turbine
,”
AIAA J. Propul. Power
,
16
(
3
), pp.
377
387
.
7.
Prasad
,
D.
, and
Hendricks
,
G. J.
,
2000
, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
,
122
(
4
), pp.
667
673
.
8.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2014
, “
Effect of NGV Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.
9.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2003-38469.
10.
Povey
,
T.
, and
Qureshi
,
I.
,
2008
, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
6
), pp.
705
720
.
11.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
12.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Non-Uniformity on HP Vane and Endwall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
13.
Adami
,
P.
,
Salvadori
,
S.
, and
Chana
,
K. S.
,
2006
, “
Unsteady Heat Transfer Topics in Gas Turbine Stages Simulations
,”
ASME
Paper No. GT2006-90298.
14.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.
15.
Chana
,
K. S.
,
Povey
,
T.
, and
Hones
,
T. V.
,
2003
, “
Heat Transfer and Aerodynamics of an Intermediate Pressure Nozzle Guide Vane With and Without Inlet Temperature Non-Uniformity
,”
ASME
Paper No. GT2003-38466.
16.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamic and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine-Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.
17.
Ames
,
F. E.
,
1997
, “
The Influence of Large Scale High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
18.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2007
, “
Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests
,”
ASME J. Turbomach.
,
129
(
2
), pp.
382
393
.
19.
Ames
,
F. E.
,
Argenziano
,
M.
, and
Wang
,
C.
,
2004
, “
Measurement and Prediction of Heat Transfer Distributions on an Aft-Loaded Vane Subjected to the Influence of Catalytic and Dry Low NOx Combustor Turbulence
,”
ASME J. Turbomach.
,
126
(
1
), pp.
139
149
.
20.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. Z.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
21.
Dring
,
R. P.
,
Blair
,
M. F.
,
Joslyn
,
H. D.
,
Power
,
G. D.
, and
Verdon
,
J. M.
,
1987
, “
The Effects of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large-Scale Rotating Turbine Model-Final Report
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-4079.
22.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2012
, “
Effects of Inlet Temperature Uniformity and Nonuniformity on the Tip Leakage Flow and Rotor Blade Tip and Casing Heat Transfer Characteristics
,”
ASME J. Turbomach.
,
134
(
2
), p.
021001
.
23.
Liu
,
Z. F.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2014
, “
Unsteady Analysis on the Effects of Tip Clearance Height on Hot Streak Migration Across Rotor Blade Tip Clearance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
082605
.
24.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
25.
Zhang
,
Q.
,
He
,
L.
, and
Rawlinson
,
A.
,
2014
, “
Effects of Inlet Turbulence and End-Wall Boundary Layer on Aerothermal Performance of a Transonic Turbine Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052603
.
26.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
27.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
221
.
28.
Durbin
,
P. A.
,
1996
, “
On the k-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.
29.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2008
, “
Prediction of Heat Transfer and Flow Transition on Transonic Turbine Airfoils Under High Freestream Turbulence
,”
ASME
Paper No. GT2008-50868.
30.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
31.
Luo
,
J.
,
Razinsky
,
E. H.
, and
Moon
,
H. K.
,
2013
, “
Three-Dimensional RANS Prediction of Gas-Side Heat Transfer Coefficients on Turbine Blade and Endwall
,”
ASME J. Turbomach.
,
135
(
2
), p.
021005
.
32.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2004
, “
A Correlation Based Transition Model Using Local Variables Part I-Model Formulation
,”
ASME
Paper No. GT2004-53452.
33.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2004
, “
A Correlation Based Transition Model Using Local Variables Part II-Test Cases and Industrial Applications
,”
ASME
Paper No. GT2004-53454.
34.
Hylton
,
L. D.
,
Mihelc
,
M. S.
, and
Turner
,
E. R.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-168015.
35.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.
36.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-168289.
37.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
(
2
), pp.
255
262
.
38.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Dependence of External Heat Transfer Coefficient and Aerodynamics on Wall Temperature for 3-D Turbine Blade Passage
,”
ASME
Paper No. GT2014-26763.
You do not currently have access to this content.