This paper discusses the impact of a nonsteady outflow condition on the compressor stator flow that is forced through a mimic in the wake of a linear low-speed cascade to simulate the conditions that would be expected in a pulsed detonation engine. 2D/3C-PIV measurements were made to describe the flow field in the passage. Detailed wake measurements provide information about static pressure rise as well as total pressure loss. The stator profile used for the investigations is highly loaded and operates with three-dimensional flow separations under design conditions and without active flow control. It is shown that sidewall actuation helps stabilize the flow field at every phase angle and extends the operating range of the compressor stator. Furthermore, the static pressure gain can be increased by 6% with a 4% loss reduction in time-averaged data.

References

References
1.
Lord
,
W. K.
,
MacMartin
,
D. G.
, and
Tillman
,
T. G.
,
2000
, “
Flow Control and Opportunities in Gas Turbine Engines
,”
AIAA
Paper No. 2000-2234.
2.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.
3.
Hecklau
,
M.
,
Zander
,
V.
,
Peltzer
,
I.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2010
, “
Experimental AFC Approaches on a Highly Loaded Compressor Cascade
,”
Active Flow Control II (Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
108
),
R.
King
, ed.,
Springer
,
Berlin
, pp.
171
186
.
4.
Hecklau
,
M.
,
Gmelin
,
C.
,
Nitsche
,
W.
,
Thiele
,
F.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Experimental and Numerical Results of Active Flow Control on a Highly Loaded Stator Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
907
918
.
5.
Zander
,
V.
,
Hecklau
,
M.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Active Flow Control by Means of Synthetic Jets on a Highly Loaded Compressor Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
897
906
.
6.
Zander
,
V.
, and
Nitsche
,
W.
,
2013
, “
Control of Secondary Flow Structures on a Highly Loaded Compressor Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
6
), pp.
674
682
.
7.
Cumpsty
,
N.
,
2004
,
Compressor Aerodynamics
,
Krieger
, Malabar, FL.
8.
Ma
,
W.
,
Ottavy
,
X.
,
Lu
,
L.
,
Leboeuf
,
F.
, and
Gao
,
F.
,
2011
, “
Experimental Study of Corner Stall in a Linear Compressor Cascade
,”
Chin. J. Aeronaut.
,
24
(
3
), pp.
235
242
.
9.
Hergt
,
A.
,
Meyer
,
R.
,
Müller
,
M. W.
, and
Engel
,
K.
,
2008
, “
Loss Reduction in Compressor Cascades by Means of Passive Flow Control
,”
ASME
Paper No. GT2008-50357.
10.
Cattafesta
,
L. N.
, III
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active and Flow Control
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
247
272
.
11.
Allgood
,
D.
,
Gutmark
,
E.
,
Rasheed
,
A.
, and
Dean
,
A. J.
,
2005
, “
Experimental Investigation of a Pulse Detonation Engine With a Two-Dimensional Ejector
,”
AIAA J.
,
43
(
2
), pp.
390
398
.
12.
Staats
,
M.
,
Nitsche
,
W.
, and
Peltzer
,
I.
,
2015
, “
Active Flow Control on a Highly Loaded Compressor Cascade With Non-Steady Boundary Conditions
,”
Active Flow and Combustion Control 2014
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
127
),
R.
King
, ed.,
Springer
, Heidelberg, Germany, pp.
23
37
.
13.
Steinberg
,
S. J.
,
Staats
,
M.
,
Nitsche
,
W.
, and
King
,
R.
,
2015
, “
Comparison of Iterative Learning and Repetitive Control Applied to a Compressor Stator Cascade
,”
Active Flow and Combustion Control 2014
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol.
127
),
R.
King
, ed.,
Springer
, Heidelberg, Germany, pp.
39
53
.
14.
Harstel
,
J. E.
,
1972
, “
Prediction of Effects of Mass-Transfer Cooling on the Blade Row Efficiency of Turbine Airfoils
,”
AIAA
10th Aerospace Sciences Meeting (72-11)
, San Diego, CA, Jan. 17–19, Paper No. 7211.
You do not currently have access to this content.