A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.
Skip Nav Destination
Article navigation
March 2016
Research-Article
Heat Transfer Measurements Downstream of Trenched Film Cooling Holes Using a Novel Optical Two-Layer Measurement Technique
Peter Schreivogel,
Peter Schreivogel
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: peter.schreivogel@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: peter.schreivogel@unibw.de
Search for other works by this author on:
Michael Pfitzner
Michael Pfitzner
Professor
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: michael.pfitzner@unibw.de
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: michael.pfitzner@unibw.de
Search for other works by this author on:
Peter Schreivogel
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: peter.schreivogel@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: peter.schreivogel@unibw.de
Michael Pfitzner
Professor
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: michael.pfitzner@unibw.de
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577, Germany
e-mail: michael.pfitzner@unibw.de
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received September 29, 2015; final manuscript received October 15, 2015; published online November 24, 2015. Editor: Kenneth C. Hall.
J. Turbomach. Mar 2016, 138(3): 031003 (9 pages)
Published Online: November 24, 2015
Article history
Received:
September 29, 2015
Revised:
October 15, 2015
Accepted:
October 19, 2015
Citation
Schreivogel, P., and Pfitzner, M. (November 24, 2015). "Heat Transfer Measurements Downstream of Trenched Film Cooling Holes Using a Novel Optical Two-Layer Measurement Technique." ASME. J. Turbomach. March 2016; 138(3): 031003. https://doi.org/10.1115/1.4031919
Download citation file:
Get Email Alerts
Related Articles
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
J. Turbomach (October,2001)
Experimental Investigation of Endwall Heat Transfer With Film and Impingement Cooling
J. Eng. Gas Turbines Power (October,2017)
Heat Transfer Characteristics Analysis on a Fully Cooled Vane With Varied Density Ratios
J. Thermal Sci. Eng. Appl (January,2022)
Direct Measurement of Heat Transfer Coefficient Augmentation at Multiple Density Ratios
J. Turbomach (January,2017)
Related Proceedings Papers
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential