This paper presents the design and experimental results of a new micro gas turbine architecture exploiting counterflow within a single supersonic rotor. This new architecture, called the supersonic rim-rotor gas turbine (SRGT), uses a single rotating assembly incorporating a central hub, a supersonic turbine rotor, a supersonic compressor rotor, and a rim-rotor. This SRGT architecture can potentially increase engine power density while significantly reducing manufacturing costs. The paper presents the preliminary design of a 5 kW SRGT prototype having an external diameter of 72.5 mm and rotational speed of 125,000 rpm. The proposed aerodynamic design comprises a single stage supersonic axial compressor, with a normal shock in the stator, and a supersonic impulse turbine. A pressure ratio of 2.75 with a mass flow rate of 130 g/s is predicted using a 1D aerodynamic model in steady state. The proposed combustion chamber uses an annular reverse-flow configuration, using hydrogen as fuel. The analytical design of the combustion chamber is based on a 0D model with three zones (primary, secondary, and dilution), and computational fluid dynamics (CFD) simulations are used to validate the analytical model. The proposed structural design incorporates a unidirectional carbon-fiber-reinforced polymer rim-rotor, and titanium alloy is used for the other rotating components. An analytical structural model and numerical validation predict structural integrity of the engine at steady-state operation up to 1000 K for the turbine blades. Experimentation has resulted in the overall engine performance evaluation. Experimentation also demonstrated a stable hydrogen flame in the combustion chamber and structural integrity of the engine for at least 30 s of steady-state operation at 1000 K.

References

References
1.
Walsh
,
P. P.
, and
Fetcher
,
P.
,
2004
,
Gas Turbine Performance
,
Wiley
,
Oxford, UK
.
2.
Brouillette
,
M.
, and
Plante
,
J.-S.
,
2008
, “
Rotary Ramjet Engine
,”
U.S. Patent No. 7,337,606
.
3.
Cool Cain
,
E. F.
,
1981
, “
Ceramic Gas Turbine Rotor
,” UK Patent Application No. 2,069,06.
4.
Rancourt
,
D.
,
Picard
,
M.
,
Denninger
,
M.
,
Chen
,
J.
,
Yousefpour
,
A.
, and
Plante
,
J.-S.
,
2012
, “
A High Power Density Rim-Rotor-Rotary Ramjet Engine. Part 1: Structural Design and Experimental Validation
,”
AIAA J. Propul. Power
,
28
(
6
), pp.
1293
1303
.
5.
Picard
,
M.
,
Rancourt
,
D.
,
Plante
,
J.-S.
, and
Brouillette
,
M.
,
2012
, “
A High Power Density Rim-Rotor-Rotary Ramjet Engine. Part 2: One-Dimensional Aerothermodynamic Design
,”
AIAA J. Propul. Power
,
28
(
6
), pp.
1304
1314
.
6.
Gros
,
J.-M. G.
, and
Gros
,
M. J.-C.
,
1988
, “
Compresseur Roue de Turbine Monobloc, Redresseur Distributeur Monobloc, Entrée d'air Tuyère D’échappement Monobloc
,” FR Patent Application No. 2,613,772-A1.
7.
Daimler-Benz
,
A. G.
,
1961
Improvements Relating to Gas Turbine Power Plants
,” GB Patent Application No. 884,646.
8.
Hayes
,
J. M.
,
2008
, “
Counter Flow Single Rotor Turbojet and Method
,”
U.S. Patent No. 5,224,339
.
9.
Plante
,
J.-S.
,
Rancourt
,
D.
, and
Picard
,
M.
,
2011
, “
Supersonic Rim-Rotor Gas Turbine
,” U.S. Patent Application No. US61/538’201.
10.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
,
Cohen
,
H.
, and
Straznicky
,
P. V.
,
2008
,
Gas Turbine Theory
,
Pearson Education Limited
,
Harlow, UK
.
11.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
1
,
Ronald Press Company
,
New York
.
12.
ANSYS
,
2009
,
ANSYS CFX Reference Guide
,
Release 12.1, Ansys Inc.
,
Canonsburg, PA
.
13.
Ferguson
,
C. R.
, and
Kirkpatrick
,
A. T.
,
2000
,
Internal Combustion Engines: Applied Thermoscience
,
Wiley
,
New York
.
14.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
.
15.
Saint-Raymond
,
M.
,
Kasarda
,
M. E. F.
, and
Allaire
,
P. E.
,
2008
, “
Windage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings
,”
ASME J. Tribol.
,
130
(
2
), p.
021101
.
16.
Etemad
,
M. R.
,
Pullen
,
K.
,
Besant
,
C. B.
, and
Baines
,
N.
,
1992
, “
Evaluation of Windage Losses for High-Speed Disc Machinery
,”
SAGE J. Power Energy
,
206
(
3
), pp.
149
157
.
17.
Gallus
,
H. E.
,
Bohn
,
D.
, and
Broichhausen
,
K. D.
,
1979
, “
Unsteady Upstream Effects in Axial-Flow Supersonic Compressor Stages
,”
ASME
Paper No. 79-GT-55.
18.
Ijichi
,
N.
,
Ono
,
H.
,
Nakano
,
K.
,
Takeo
,
K.
,
Onosato
,
H.
, and
Tsukamoto
,
M.
,
1998
, “
Development of a High Expansion Ratio, Single-Stage Axial Turbine for Marine Turbocharger
,”
6th International Conference on Turbocharging and Air Management Systems
,
London
, Nov. 3–5, IMechE Paper No. C554/009/98, pp.
303
314
.
19.
Mellor
,
A. M.
,
1990
,
Design of Modern Turbine Combustors
,
Academic Press
,
New York
.
20.
Fortier-Topping
,
H.
, and
Vézina
,
G.
,
2013
, “
Design and Sensitivity Study of a Combustion Chamber of a Supersonic Rim-Rotor Gas Turbine (SRGT) Engine
,”
21st Annual Conference of the CFD Society of Canada
,
Sherbrooke, Canada
, May 6–9.
21.
Etemad
,
M. R.
,
Pask
,
E.
, and
Besant
,
C. B.
,
1992
, “
Hoop-Strength Characterization of High-Strength Carbon Fibre Composites
,”
Composites
,
23
(
4
), pp.
253
259
.
22.
Bazergui
,
A.
,
Bui-Quoc
,
T.
,
Biron
,
A.
,
McIntyre
,
G.
, and
Laberge
,
C.
,
2002
,
Resistance des Materiaux
,
Presses Internationales Polytechnique
,
Montreal, QC, Canada
.
23.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
24.
Kaufman
,
J.
,
1999
,
Properties of Aluminum Alloys: Tensile, Creep and Fatigue Data at High and Low Temperature
,
ASM International
,
Washington, DC
.
25.
Daniel
,
I. M.
, and
Ishai
,
O.
,
2005
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
Oxford, UK
.
26.
Rancourt
,
D.
,
2011
, “
Analyse Structurelle et Validation Experimentalle d'un Rim-Rotor Rotary Ramjet Engine (R4E)
,” Master's thesis, Universite de Sherbrooke, Sherbrooke, QC, Canada.
27.
Cytec Engineered Materials
,
2012
,
APC-2 PEEK Thermoplastic Polymer
,
Technical Data Sheet
,
Tempe, AZ
.
You do not currently have access to this content.