The effects of the hot streak and airfoil clocking on the heat transfer and aerodynamic characteristics in a high pressure (HP) gas turbine have been investigated in this paper. The blade geometry is taken from the first 1.5 stage turbine of GE-E3 engine. To study the effect of hot streak clocking, three cases under nonuniform and uniform inlet temperature boundary conditions were simulated first. Subsequently, four clocking positions (CPs) of S2 (second stator) were arranged in these three cases to study the combined effect of hot streak and airfoil clocking. By solving the unsteady compressible Reynolds-averaged Navier–Stokes (RANS) equations, time-dependent solutions for the flow and heat transfer characteristics of the 1.5 stage turbine were obtained. The results indicate that impinged by different inlet temperature profiles, the heat flux distribution on S1 (first stator) blade varies significantly. Due to the separation of hot and cold fluid, more hot fluid flows toward pressure side (PS) of R1 (first rotor) and worsens the heat transfer environment there. The high heat flux on the R1 blade surface is controlled not only by the high heat transfer coefficient but also by the large temperature difference. By adjusting the CPs of S2, the hot streak fragments from the upstream could be guided to different places in S2 passage, to reduce the heat load on S2 blade surface. In view of the influence of the heat transfer characteristics, the nonadiabatic efficiency is calculated. The combined effects of the hot streak and airfoil clocking have been discussed, and the proper matching position for the two kinds of clocking could be selected for a higher nonadiabatic efficiency and lower heat load on S2 blade and end walls.

References

References
1.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.
2.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
AIAA J. Propul. Power
,
5
(
1
), pp.
64
71
.
3.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage—Part 1: Separate Effects
,”
ASME J. Turbomach.
,
115
(
4
), pp.
657
666
.
4.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
,
1983
, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With Nonuniform Inlet Radial Temperature Profiles
,”
AIAA
Paper No. 83-1175.
5.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
,
1984
, “
Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,”
AIAA
Paper No. 84-1161.
6.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2003-38469.
7.
Povey
,
T.
,
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
Heat Transfer Measurements on an Intermediate Pressure Nozzle Guide Vane Tested in a Rotating Annular Turbine Facility, and the Modifying Effects of a Non-Uniform Inlet Temperature Profile
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
421
431
.
8.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
9.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and Endwall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
10.
Jenny
,
P.
,
Lenherr
,
C.
,
Abhari
,
R. S.
, and
Kalfas
,
A.
,
2012
, “
Effect of Hot Streak Migration on Unsteady Blade Row Interaction in an Axial Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051020
.
11.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2006
, “
Effects of Combustor Exit Profiles on High Pressure Turbine Vane Aerodynamics and Heat Transfer
,”
ASME
Paper No. GT2006-90277.
12.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021010
.
13.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
3
), pp.
544
553
.
14.
Jenkins
,
S. C.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
15.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2007
, “
Scaling of Guide Vane Coolant Profiles and the Reduction of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
129
(
3
), pp.
619
627
.
16.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
17.
Dorney
,
D. J.
, and
Burlet
,
K. G.
,
1995
, “
Hot-Streak Clocking Effects in a 1–1/2 Stage Turbine
,”
ASME
Paper No. 95-GT-202.
18.
Burlet
,
K. G.
, and
Dorney
,
D. J.
,
1997
, “
Three-Dimensional Simulations of Hot Streak Clocking in a 1-1/2 Stage Turbine
,”
Int. J. Turbo Jet Engines
,
14
(
3
), pp.
133
144
.
19.
Burlet
,
K. G.
, and
Dorney
,
D. J.
,
2000
, “
Effects of Radial Location on the Migration of Hot Streaks in a Turbine
,”
AIAA J. Propul. Power
,
16
(
3
), pp.
377
387
.
20.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2012
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
21.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2007
, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
AIAA J. Propul. Power
,
23
(
6
), pp.
1235
1241
.
22.
Sondak
,
D. L.
,
Gupta
,
V.
,
Orkwis
,
P. D.
, and
Dorney
,
D. J.
,
2002
, “
Effects of Blade Count on Linearized and Nonlinear Hot Streak Clocking Simulations
,”
AIAA J. Propul. Power
,
18
(
6
), pp.
1273
1279
.
23.
An
,
B. T.
,
Liu
,
J. J.
, and
Jiang
,
H. D.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
.
24.
Murari
,
S.
,
Sathish
,
S.
,
Bommisetty
,
R.
, and
Liu
,
J. S.
,
2013
, “
CFD Analyses of a Single Stage Turbine With Inlet Hot-Streak at Different Circumferential Locations
,”
ASME
Paper No. GT2013-94141.
25.
Liu
,
Z. F.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2014
, “
Unsteady Analysis on the Effects of Tip Clearance Height on Hot Streak Migration Across Rotor Blade Tip Clearance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
082605
.
26.
Casaday
,
B.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
,
M.
,
Clum
,
C.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Deposition With Hot Streak in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(
4
), p.
041017
.
27.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
28.
Schmid
,
G.
, and
Schiffer
,
H. P.
,
2012
, “
Numerical Investigation of Inlet Swirl in a Turbine Cascade
,”
ASME
Paper No. GT2012-69397.
29.
Rahim
,
A.
,
He
,
L.
, and
Romero
,
E.
,
2014
, “
Rotor Blade Heat Transfer Characteristics for High Pressure Turbine Stage Under Inlet Temperature and Velocity Traverses
,”
ASME
Paper No. GT2014-26832.
30.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME
Paper No. GT2012-69157.
31.
Zhao
,
Q. J.
,
Tang
,
F.
,
Wang
,
H. S.
,
Du
,
J. Y.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
,
2008
, “
Influence of Hot Streak Temperature Ratio on Low Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031901
.
32.
Zhao
,
Q. J.
,
Du
,
J. Y.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
,
2010
, “
Tip Clearance Effects on Inlet Hot Streak Migration Characteristics in High Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
ASME J. Turbomach.
,
132
(
1
), p.
011005
.
33.
Reinmoller
,
U.
,
Stephan
,
B.
,
Schmidt
,
S.
, and
Niehuis
,
R.
,
2002
, “
Clocking Effects in a 1.5 Stage Axial Turbine-Steady and Unsteady Experimental Investigations Supported by Numerical Simulations
,”
ASME J. Turbomach.
,
124
(
1
), pp.
52
60
.
34.
Schennach
,
O.
,
Woisetschlager
,
J.
,
Fuchs
,
A.
,
Gottlich
,
E.
,
Marn
,
A.
, and
Pecnik
,
R.
,
2007
, “
Experimental Investigations of Clocking in a One-and-a-Half-Stage Transonic Turbine Using Laser Doppler Velocimetry and a Fast Response Aerodynamic Pressure Probe
,”
ASME J. Turbomach.
,
129
(
2
), pp.
372
381
.
35.
Schennach
,
O.
,
Woisetschlaeger
,
J.
,
Paradiso
,
B.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2010
, “
Three Dimensional Clocking Effects in a One and a Half Stage Transonic Turbine
,”
ASME J. Turbomach.
,
132
(
1
), p.
011019
.
36.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA
CR-168015.
37.
Rai
,
M. M.
,
1989
, “
Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator Interaction. Part 1—Methodology
,”
AIAA J. Propul. Power
,
5
(
3
), pp.
305
311
.
38.
Li
,
H. D.
, and
He
,
L.
,
2003
, “
Blade Count and Clocking Effects on Three-Bladerow Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
632
640
.
39.
Timko
,
L. P.
,
1990
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA
CR-168289.
40.
Ameri
,
A. A.
,
Rigby
,
D. L.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J. C.
,
2010
, “
Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes
,”
ASME J. Turbomach.
,
132
(
4
), p.
041007
.
41.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
42.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2014
, “
Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.
43.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.
You do not currently have access to this content.