In the present paper, direct numerical simulation (DNS) data of a low-pressure turbine (LPT) are investigated in light of turbulence modeling. Many compressible turbulence models use Favre-averaged transport equations of the conservative variables and turbulent kinetic energy (TKE) along with other modeling equations. First, a general discussion on the turbulence modeling error propagation prescribed by transport equations is presented, leading to the terms that are considered to be of interest for turbulence model improvement. In order to give turbulence modelers means of validating their models, the terms appearing in the Favre-averaged momentum equations are presented along pitchwise profiles at three axial positions. These three positions have been chosen such that they represent regions with different flow characteristics. General trends indicate that terms related with thermodynamic fluctuations and Favre fluctuations are small and can be neglected for most of the flow field. The largest errors arise close to the trailing edge (TE) region where vortex shedding occurs. Finally, linear models and the scope for their improvement are discussed in terms of a priori testing. Using locally optimized turbulence viscosities, the improvement potential of widely used models is shown. On the other hand, this study also highlights the danger of pure local optimization.

References

References
1.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
,
La Canada Flintridge, CA
.
2.
Boussinesq
,
J.
,
1877
, “
Théorie de l’écoulement tourbillant
,”
Mem. Pre. par. div. Sav.
,
23
, pp.
46
50
.
3.
Hinze
,
J. O.
,
1976
, “
Gedachtniseffekte in der Turbulenz
,”
Z. Angew. Math. Mech.
,
56
(
1970
), pp.
T403
T415
.
4.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
5.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
6.
Sanders
,
D. D.
,
OBrien
,
W. F.
,
Sondergaard
,
R.
,
Polanka
,
M. D.
, and
Rabe
,
D. C.
,
2011
, “
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology
,”
ASME J. Turbomach.
,
133
(
3
), p.
031011
.
7.
Franke
,
M.
,
Wallin
,
S.
, and
Thiele
,
F.
,
2005
, “
Assessment of Explicit Algebraic Reynolds-Stress Turbulence Models in Aerodynamic Computations
,”
Aerosp. Sci. Technol.
,
9
(
7
), pp.
573
581
.
8.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2003
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
(
3
), pp.
295
330
.
9.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
10.
Medic
,
G.
, and
Sharma
,
O. P.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878.
11.
Schobeiri
,
M. T.
, and
Abdelfattah
,
S.
,
2013
, “
On the Reliability of RANS and URANS Numerical Results for High-Pressure Turbine Simulations: A Benchmark Experimental and Numerical Study on Performance and Interstage Flow Behavior of High-Pressure Turbines at Design and Off-Design Conditions Using Two Different Turbine Designs
,”
ASME J. Turbomach.
,
135
(
6
), p.
061012
.
12.
Lodefier
,
K.
, and
Dick
,
E.
,
2006
, “
Modelling of Unsteady Transition in Low-Pressure Turbine Blade Flows With Two Dynamic Intermittency Equations
,”
Flow, Turbul. Combust.
,
76
(
2
), pp.
103
132
.
13.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
14.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
(
1
), pp.
370
410
.
15.
Bode
,
C.
, and
Friedrichs
,
J.
,
2014
, “
The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows
,”
ASME
Paper No. GT2014-27026.
16.
Schmitt
,
F. G.
,
2007
, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity
,”
C. R. Méc.
,
335
(
9–10
), pp.
617
627
.
17.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
194
, pp.
15
44
.
18.
Speziale
,
C. G.
,
Abid
,
R.
, and
Anderson
,
E. C.
,
1992
, “
Critical Evaluation of Two-Equation Models for Near-Wall Turbulence
,”
AIAA J.
,
30
(
2
), pp.
324
331
.
19.
Rodi
,
W.
, and
Mansour
,
N. N.
,
1993
, “
Low Reynolds Number k–ε Modelling With the Aid of Direct Simulation Data
,”
J. Fluid Mech.
,
250
, pp.
509
529
.
20.
Rodi
,
W.
,
Mansour
,
N. N.
, and
Michelassi
,
V.
,
1993
, “
One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
196
205
.
21.
Coleman
,
G. N.
,
Kim
,
J.
, and
Spalart
,
P. R.
,
2003
, “
Direct Numerical Simulation of a Decelerated Wall-Bounded Turbulent Shear Flow
,”
J. Fluid Mech.
,
495
, pp.
1
18
.
22.
Hoyas
,
S.
, and
Jimenez
,
J.
,
2008
, “
Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels
,”
Phys. Fluids
,
20
(
10
), p.
101511
.
23.
Eitel-Amor
,
G.
,
Örlü
,
R.
, and
Schlatter
,
P.
,
2014
, “
Simulation and Validation of a Spatially Evolving Turbulent Boundary Layer up to Reθ=8300
,”
Int. J. Heat Fluid Flow
,
47
, pp.
57
69
.
24.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
25.
Bijak-Bartosik
,
E.
,
Elsner
,
W.
, and
Wysocki
,
M.
,
2009
, “
Evolution of the Wake in a Turbine Blade Passage
,”
J. Theor. Appl. Mech.
,
47
(
1
), pp.
41
53
.
26.
Sideridis
,
A.
,
Yakinthos
,
K.
, and
Goulas
,
A.
,
2011
, “
Turbulent Kinetic Energy Balance Measurements in the Wake of a Low-Pressure Turbine Blade
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
212
225
.
27.
Muldoon
,
F.
, and
Acharya
,
S.
,
2006
, “
Analysis of k–ε Budgets for Film Cooling Using Direct Numerical Simulation
,”
AIAA J.
,
44
(
12
), pp.
3010
3021
.
28.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
29.
Schlichting
,
H.
,
2000
,
Boundary Layer Theory
,
8th ed.
,
Springer-Verlag
,
Berlin
.
30.
Adumitroaie
,
V.
,
Ristorcelli
,
J. R.
, and
Taulbee
,
D. B.
,
1999
, “
Progress in Favré–Reynolds Stress Closures for Compressible Flows
,”
Phys. Fluids
,
11
(
9
), pp.
2696
2719
.
31.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
32.
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade
,”
ASME
Paper No. 2001-GT-0311.
33.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
34.
Arndt
,
N.
,
1993
, “
Blade Row Interaction in a Multistage Low-Pressure Turbine
,”
ASME J. Turbomach.
,
115
(
1
), pp.
137
146
.
35.
Spalart
,
P. R.
,
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Direct Simulation and RANS Modelling of a Vortex Generator Flow
,”
10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
(
ETMM10
), Marbella, Spain, Sept. 17–19.
This content is only available via PDF.
You do not currently have access to this content.