In this study, the impact of single grooves at different locations on compressor stability and tip clearance flow are numerically and experimentally investigated. Initially, the numerical stall margin improvement (SMI) curve is examined using experimental data. Then, the evolution of the interface between the tip leakage flow (TLF) and the incoming main flow (MF) in the prestall and stall inception processes for two typical grooves, i.e., the worst and the optimal grooves in terms of their SMI, are compared with the smooth casing. The results show two different interface behaviors throughout the throttling process. The compressor with the worst single groove casing first experiences a long-length-scale disturbance after the interface near the blade suction side spills in front of the rotor leading-edge plane, and then goes through spikes after the whole interface spills. With the smooth casing and the optimal single groove near midchord, the interface reaches the rotor leading edge at the last stable operating point and spikes appear once the whole interface spills over the rotor leading edge. A model that illustrates the spillage patterns of the interface for the two stall precursors is thus proposed accordingly and used to explain their effectiveness in terms of the SMI. At last, the relevance of these results to the preliminary selection of groove locations for multigroove casing treatments (CTs) is verified by test data and discussed.

References

1.
Bailey
,
E. E.
,
1972
, “
Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor
,” NASA Report No. TM 2459.
2.
Houghton
,
T.
, and
Day
,
I.
,
2009
, “
Enhancing the Stability of the Subsonic Compressor Using Casing Grooves
,”
ASME
Paper No. GT2009-59210.
3.
Houghton
,
T.
, and
Day
,
I.
,
2010
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME
Paper No. GT2010-22284.
4.
Liu
,
L.
,
Zhang
,
H.
,
Li
,
J.
,
Lin
,
F.
, and
Nie
,
C.
,
2012
, “
Effects of Single Circumferential Groove at Different Axial Locations on a Low-Speed Axial Compressor's Tip Region Flow
,” Asian Congress on Gas Turbines 2012, August 20–22, Shanghai, P. R. China, Paper No. ACGT 2012-1082.
5.
Shabbir
,
A.
, and
Adamczyk
,
J. D.
,
2005
, “
Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
(
4
), pp.
708
717
.
6.
Lu
,
X.
,
Zhu
,
J.
,
Chu
,
W.
, and
Wu
,
Y.
,
2006
, “
Mechanism of the Interaction Between Casing Treatment and Tip Leakage Flow in a Subsonic Compressor
,”
ASME
Paper No. GT2006-90077.
7.
Nan
,
X.
,
Lin
,
F.
,
Du
,
J.
,
Chen
,
J. Y.
,
Jemcov
,
A.
, and
Morris
,
S. C.
,
2013
, “
The Momentum Balance in the Blade Tip Region and the Effectiveness of Circumferential Grooves in a Transonic Rotor
,”
ASME
Paper No. GT2013-95372.
8.
Zhao
,
S.
, and
Lu
,
X.
,
2010
, “
Investigation for the Effects of Circumferential Grooves on the Unsteadiness of Tip Clearance Flow to Enhance Compressor Flow Instability
,”
ASME
Paper No. GT2010-22652.
9.
Sakuma
,
Y.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2013
, “
Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability
,”
ASME
Paper No. GT2013-94988.
10.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
11.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
12.
Lin
,
F.
,
Zhang
,
J. X.
,
Chen
,
J. Y.
, and
Nie
,
C. Q.
,
2008
, “
Flow Structure of Short Length Scale Disturbance in an Axial Flow Compressor
,”
AIAA J. Propul. Power
,
24
(
6
), pp.
1301
1308
.
13.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2012
, “
Origins and Structure of Spike-type Rotating Stall
,”
ASME
Paper No. GT2012-68707.
14.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor-Criteria and Mechanisms
,”
ASME
Paper No. GT2006-90045.
15.
Li
,
J. C.
,
Lin
,
F.
,
Wang
,
S. C.
,
Du
,
J.
,
Nie
,
C. Q.
, and
Chen
,
J. Y.
,
2014
, “
Extensive Experimental Study of Circumferential Single Groove in an Axial Flow Compressor
,”
ASME
Paper No. GT2014-26859.
16.
Chen
,
J.-P.
, and
Hathaway
,
M. D.
,
2007
, “
Pre-Stall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME
Paper No. GT2007-27926.
17.
Du
,
J.
,
Lin
,
F.
,
Zhang
,
H.
, and
Chen
,
J.
,
2010
, “
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021017
.
18.
Cameron
,
J. D.
,
Bennington
,
M. A.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Du
,
J.
,
Lin
,
F.
, and
Chen
,
J.
,
2013
, “
The Influence of Tip Clearance Momentum Flux on Stall Inception in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051005
.
19.
Hathaway
,
M. D.
,
2007
, “
Passive Endwall Treatments for Enhancing Stability
,” Advances in Axial Compressor Aerodynamics Lecture Series, Report No. ARL-TR-3878.
You do not currently have access to this content.