The present paper numerically investigates the stall inception mechanisms in a centrifugal compressor stage composed of a splittered unshrouded impeller and a vaned diffuser. Unsteady numerical simulations have been conducted on a calculation domain comprising all the blade passages over 360 deg for the impeller and the diffuser. Three stable operating points are simulated along a speed line, and the full path to instability is investigated. The paper focusses first on the effects of the mass flow reduction on the flow topology at the inlet of both components. Then, a detailed analysis of stall inception mechanisms is proposed. It is shown that at the inlet of both components, the mass flow reduction induces boundary layer separation on the blade suction side, which results in a vortex tube having its upper end at the casing and its lower end at the blade wall. Some similarities with flows in axial compressor operating at stall condition are outlined. The stall inception process starts with the growth of the amplitude of a modal wave rotating in the vaneless space. As the flow in the compressor is subsonic, the wave propagates upstream and interacts with the impeller flow structure. This interaction leads to the drop in the impeller pressure ratio.

References

References
1.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.
2.
Cumpsty
,
N.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing, Malabar, FL
.
3.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.
4.
McDougall
,
N. M.
,
Cumpsty
,
N. M.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
125
.
5.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressor
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
6.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
1997 Best Paper Award—Turbomachinery Committee: A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
7.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
8.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
9.
Trébinjac
,
I.
,
Bulot
,
N.
,
Ottavy
,
X.
, and
Buffaz
,
N.
,
2011
, “
Surge Inception in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2011-45116.
10.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), pp.
1
9
.
11.
Toyama
,
K.
,
Runstadler
,
P. W.
, and
Dean
,
R. C.
,
1977
, “
An Experimental Study of Surge in Centrifugal Compressors
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
115
124
.
12.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(4), pp.
455
469
.
13.
Mizuki
,
S.
, and
Oosawa
,
Y.
,
1992
, “
Unsteady Flow Within Centrifugal Compressor Channels Under Rotating Stall and Surge
,”
ASME J. Turbomach.
,
114
(
2
), pp.
312
320
.
14.
Cambier
,
L.
, and
Gazaix
,
M.
,
2002
, “
ElsA: An Efficient Object-Oriented Solution to CFD Complexity
,”
AIAA
Paper No. 2002-0108.
15.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aérospaciale
,
1
, pp.
5
21
.
16.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Airfoils and Wings
,”
AIAA
Paper No. 91-1596.
17.
Yoon
,
S.
, and
Jameson
,
A.
,
2002
, “
An LU-SSOR Scheme for the Euler and Navier–Stokes Equation
,”
AIAA
Paper No. 87-0600.
18.
Dufour
,
G.
,
Carbonneau
,
X.
,
Arbez
,
P.
, and
Cazalbou
,
J. B.
,
2004
, “
Mesh-Generation Parameters Influence on Centrifugal-Compressor Simulation for Design Optimization
,”
ASME
Paper No. HT-FED2004-56314.
19.
Filola
,
G.
,
Pape
,
M. C. L.
, and
Montagnac
,
M.
,
2004
, “
Numerical Simulations Around Wing Control Surfaces
,”
24th International Congress of the Aeronautical Sciences
, Yokohama, Japan, Aug. 29–Sept. 3.
20.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Roumeas
,
M.
, and
Trébinjac
,
I.
,
2016
, “
Numerical Investigation of Kelvin-Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
1
), p.
071007
.
21.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluids Mech.
,
285
, pp.
69
94
.
22.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
23.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Technical Paper No. 620532.
24.
Trébinjac
,
I.
,
Kulisa
,
P.
,
Bulot
,
N.
, and
Rochuon
,
N.
,
2009
, “
Effect of Unsteadiness on the Performance of a Transonic Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
131
(4), p.
041101
.
25.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(1), p.
011023
.
You do not currently have access to this content.