A generic impingement cooling system for turbomachinery application is modeled experimentally and numerically to investigate heat transfer and pressure loss characteristics. The experimental setup consists of an array of 9 × 9 jets impinging on a target plate with cubic micro pin fins. The cubic micro pin fins have an edge length of 0.22 D and enlarge the target area by 150%. Experimentally heat transfer is measured by the transient liquid crystal (TLC) method. The transient method used requires a heated jet impinging on a cold target plate. As reference temperature for the heat transfer coefficient, we use the total jet inlet temperature which is measured via thermocouples in the jet center. The computational fluid dynamics (CFD) model was realized within the software package ANSYS CFX. This model uses a Steady-state 3D Reynolds-averaged Navier–Stokes (RANS) approach and the shear stress transport (SST) turbulence model. Boundary conditions are chosen to mimic the experiments as close as possible. The effects of different jet-to-plate spacing (H/D = 3–5), crossflow schemes, and jet Reynolds number (15,000–35,000) are investigated experimentally and numerically. The results include local Nusselt numbers as well as area and line averaged values. Numerical simulations allow a detailed insight into the fluid mechanics of the problem and complement experimental measurements. A good overall agreement of experimental and numerical behavior for all investigated cases could be reached. Depending on the crossflow scheme, the cubic micro pin fin setup increases the heat flux to about 134–142% compared to a flat target plate. At the same time, the Nusselt number slightly decreases. The micro pin fins increase the pressure loss by not more than 14%. The results show that the numerical model predicts the heat transfer characteristics of the cubic micro pin fins in a satisfactory way.

References

References
1.
Downs
,
S. J.
, and
James
,
E. H.
,
1987
, “
Jet Impingement Heat Transfer—A Literature Survey
,”
National Heat Transfer Conference
, Pittsburgh, PA, Paper No. 87-HT-35.
2.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1989
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Heat Transfer
,
2
(
2
), pp.
157
197
.
3.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
4.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
5.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
147
161
.
6.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
7.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer.
,
101
(
3
), pp.
526
531
.
8.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
9.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.
10.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
11.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2008
, “
Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(1–2), pp.
6243
6253
.
12.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
13.
Annerfeldt
,
M. O.
,
Persson
,
J. L.
, and
Torisson
,
T.
,
2001
, “
Experimental Investigation of Impingement Cooling with Turbulators or Surface Enlarging Elements
,”
ASME
Paper No. 2001-GT-0149.
14.
Yan
,
W. M.
,
Liu
,
H. C.
,
Soong
,
C. Y.
, and
Yang
,
W.-J.
,
2005
, “
Experimental Study of Impinging Heat Transfer Along Rib-Roughened Walls by Using Transient Liquid Crystal Technique
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2420
2428
.
15.
Yan
,
W. M.
, and
Mei
,
S. C.
,
2006
, “
Measurement of Detailed Heat Transfer Along Rib-Roughened Surface Under Arrays of Impinging Elliptic Jets
,”
Int. J. Heat Mass Transfer
,
49
(1–2), pp.
159
170
.
16.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.
17.
Trabold
,
T. A.
, and
Obot
,
N. T.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets. Part II: Effects of Crossflow in the Presence of Roughness Elements
,”
ASME J. Turbomach.
,
109
(
4
), pp.
594
601
.
18.
Chang
,
H.
,
Zhang
,
D.
, and
Huang
,
T.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,”
ASME
Paper No. 97-GT-331.
19.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
,
1998
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Effect of Geometric Parameters
,”
ASME
Paper No. 98-GT-208.
20.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
,
2000
, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: Correlation
,”
ASME
Paper No. 2000-GT-0220.
21.
Son
,
C.
,
Dailey
,
G.
,
Ireland
,
P.
, and
Gillespie
,
D.
,
2005
, “
An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System
,”
ASME
Paper No. GT2005-68504.
22.
Spring
,
S.
,
Xing
,
Y.
, and
Weigand
,
B.
,
2012
, “
An Experimental and Numerical Study of Heat Transfer From Arrays of Impinging Jets with Surface Ribs
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082201
.
23.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
24.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
25.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(19–20), pp.
3874
3886
.
26.
Wan
,
C.
,
Rao
,
Y.
, and
Zhang
,
X.
,
2013
, “
Numerical Investigation of Impingement Heat Transfer on a Flat and Square Pin-fin Roughened Plates
,”
ASME
Paper No. GT2013-94473.
27.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advaced Evaluation of Transeint Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
793
801
.
28.
Poser
,
R.
,
2010
, “
Transient Heat Transfer Experiments in Complex Geometries Using Liquid Crystal Thermography
,” Ph.D. thesis, Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Germany.
29.
Wanger
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
,
2004
, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,”
ASME
Paper No. GT 2004-53553.
30.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Corrective Heat and Mass Transfer
, Vol.
4
,
McGraw-Hill
,
New York
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
32.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
33.
Kingsley-Rowe
,
J. R.
,
Locl
,
G. D.
, and
Owen
,
J. M.
,
2005
, “
Uncertainties in Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.
34.
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Jet Impingement Heat Transfer
,”
Internal Cooling in Turbomachinery (VKI Lecture Series 2010-05)
, von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
35.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
36.
Centaur, “
Computational Grids for Advanced Simulations
,” CentaurSoft, Austin, TX, https://www.centaursoft.com/
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
0708001
.
38.
Roache
,
P. J.
,
1994
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
39.
Cooper
,
D.
,
Jackson
,
D.
,
Launder
,
B.
, and
Liao
,
G.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment. Part I: Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2675
2684
.
40.
Spring
,
S.
,
2010
, “
Numerical Prediction of Jet Impingement Heat Transfer
,” Ph.D. thesis, Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Stuttgart, Germany.
41.
Xing
,
Y.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer Characteristics on Flat and Roughened Plates With Different Crossfiow Schemes
,” Ph.D. thesis, Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Stuttgart, Germany.
42.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol.
13
,
Academic Press
,
New York
, pp.
1
60
.
43.
Goldstein
,
R.
, and
Seol
,
W.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
.
You do not currently have access to this content.