A direct numerical simulation (DNS) of spanwise-rotating turbulent channel flow was conducted for four rotation numbers: Rob=0, 0.2, 0.5, and 0.9 at a Reynolds number of 8000 based on laminar centerline mean velocity and Prandtl number 0.71. The results obtained from these DNS simulations were utilized to evaluate several turbulence closure models for momentum and heat transfer transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, explicit algebraic Reynolds stress models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure–strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heat flux distributions obtained from two explicit algebraic heat flux models (EAHFM) consistently displayed increasing disagreement with DNS data with increasing rotation rate.

References

References
1.
Grundestam
,
O.
,
Wallin
,
S.
, and
Johansson
,
A.
,
2008
, “
Direct Numerical Simulations of Rotating Turbulent Channel Flow
,”
J. Fluid Mech.
,
598
, pp.
177
199
.
2.
Wu
,
H.
, and
Kasagi
,
N.
,
2004
, “
Effects of Arbitrary Directional System Rotation on Turbulent Channel Flow
,”
Phys. Fluids
,
16
(
4
), pp.
979
990
.
3.
Acharya
,
S.
,
Sethuraman
,
E.
, and
Nikotopoulos
,
S.
,
2012
, “
Mass and Heat Transfer in Rotating, Smooth, High Aspect Ratio Coolant Channels With Curved Walls
,”
ASME J. Turbomach.
,
131
(2), p.
021002
.
4.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
(
3
), pp.
485
498
.
5.
Reif
,
B. P.
,
Durbin
,
P.
, and
Ooi
,
A.
,
1999
, “
Modeling Rotational Effects in Eddy-Viscosity Closure
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
563
573
.
6.
Speziale
,
C.
, and
Gatski
,
T.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.
7.
Girimaji
,
S.
,
1996
, “
Fully Explicit and Self-Consistent Reynolds Stress Model
,”
Theor. Comput. Fluid Dyn.
,
8
(
6
), pp.
387
402
.
8.
Grundestam
,
O.
,
Wallin
,
S.
, and
Johansson
,
A.
,
2005
, “
An Explicit Algebraic Reynolds Stress Model Based on a Nonlinear Pressure Strain Rate Model
,”
Int. J. Heat Fluid Flow
,
26
(
5
), pp.
732
745
.
9.
Younis
,
B.
,
Weigand
,
B.
, and
Laqua
,
A.
,
2012
, “
Prediction of Turbulent Heat Transfer in Rotating and Nonrotating Channels With Wall Suction and Blowing
,”
ASME J. Heat Transfer
,
134
(7), p.
071702
.
10.
Abe
,
K.
, and
Suga
,
K.
,
2000
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model
,”
Int. J. Heat Fluid Flow
,
22
(1), pp.
19
29
.
11.
Waggy
,
S.
,
Biringen
,
S.
, and
Sullivan
,
P.
,
2013
, “
Direct Numerical Simulation of Top-Down and Bottom-Up Diffusion in the Convective Boundary Layer
,”
J. Fluid Mech.
,
724
, pp.
581
606
.
12.
Waggy
,
S.
,
Kucala
,
A.
, and
Biringen
,
S.
,
2014
, “
Parallel Implementation of a Navier–Stokes Solver: Turbulent Ekman Layer Direct Simulation
,”
Int. J. Comput. Methods
,
11
(5), pp.
443
460
.
13.
Waggy
,
S.
,
Marlatt
,
S.
, and
Biringen
,
S.
,
2011
, “
Direct Numerical Simulation of the Turbulent Ekman Layer: Instantaneous Flow Structures
,”
J. Thermophys. Heat Transfer
,
25
(
2
), pp.
309
318
.
14.
Waggy
,
S.
,
Biringen
,
S.
, and
Kucala
,
A.
,
2015
, “
Wake Effects on Turbulent Transport in the Convective Boundary Layer
,”
Geophys. Astrophys. Fluid Dyn.
,
109
(
5
), pp.
465
479
.
15.
Kristofferson
,
R.
, and
Andersson
,
H.
,
1993
, “
Direct Simulations of Low Reynolds Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
,
253
, pp.
163
197
.
16.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
17.
Kreplin
,
H.
, and
Eckelmann
,
M.
,
1979
, “
Behavior of the Three Fluctuating Velocity Components in the Wall Region of a Turbulent Channel Flow
,”
Phys. Fluids
,
22
(
7
), pp.
1233
1239
.
18.
Kasagi
,
N.
, and
Nishino
,
K.
,
1991
, “
Probing Turbulence With Three-Dimensional Particle-Tracking Velocimetry
,”
Exp. Therm. Fluid Sci.
,
4
(
5
), pp.
601
612
.
19.
Liu
,
N.
, and
Lun
,
X.
,
2007
, “
Direct Numerical Simulation of Spanwise Rotating Turbulent Channel Flow With Heat Transfer
,”
Int. J. Numer. Methods Fluids
,
53
(
11
), pp.
1689
1706
.
20.
Launder
,
B.
, and
Shama
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(2), pp.
131
138
.
21.
Launder
,
B.
,
Reece
,
G.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulent Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
22.
Speziale
,
C.
,
Sarkar
,
S.
, and
Gatski
,
T.
,
1991
, “
Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
23.
Rung
,
T.
, and
Thiele
,
F.
,
1999
, “
On the Realizability of Nonlinear Stress-Strain Relationships for Reynolds Stress Closures
,”
Flow Turbul. Combust.
,
60
(4), pp.
333
359
.
24.
Schumann
,
U.
,
1977
, “
Realizability of Reynolds-Stress Turbulence Models
,”
Phys. Fluids
,
20
(
5
), pp.
721
725
.
25.
Mishra
,
A.
, and
Girimaji
,
S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-Point Physics and Amenability to One-Point Closures
,”
J. Fluid Mech.
,
731
, pp.
639
681
.
26.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Film Cooling Modeling of Turbine Blades Using Algebraic Anisotropic Turbulence Models
,”
ASME J. Turbomach.
,
136
(11), p.
111006
.
27.
Launder
,
B.
,
1975
, “
On the Effects of a Gravitational Field on the Turbulent Transport of Heat and Momentum
,”
J. Fluid Mech.
,
67
(03), pp.
569
581
.
You do not currently have access to this content.