This paper presents an experimental investigation on the performances of a new film cooling structure design, in which a ramp is placed upstream of a cylindrical film hole and a cylindrical cavity with two diagonal impingement holes is set at the inlet of the film hole to generate a swirling coolant flow entering the film hole. The experiments are carried out by two undisturbed measurement techniques, planar laser induced fluorescence (PLIF) and time-resolved particle image velocimetry (TR-PIV) in a water tunnel. The effects of the upstream ramp angle, blowing ratio (BR), and coolant impingement angle on the film cooling performances of a flat plate are studied at three ramp angles (0 deg, 15 deg, and 25 deg), two coolant swirling directions (clockwise and counterclockwise), two impingement angles (15 deg and 30 deg), and three BRs (0.6, 1.0, and 1.4). The experimental results show that at high BRs, the combination structures of the upstream ramp with the swirling coolant flow generated by the impingement angles can significantly improve film cooling performances; the best combination is at a 30 deg impingement angle and a 25 deg ramp angle. This can be explained by the fact that the swirling flow is significantly pressed on to the wall by means of the upstream ramp. Using the analogous analysis of heat and mass transfer, the adiabatic film effectiveness averaged over a cross section is obtained; the analysis indicates that at high BRs, the combined effect of a ramp with a large angle of 25 deg with 30 deg impingement angle can increase the film effectiveness up to 30% when compared to the test case without a ramp at the exit of the film hole. The images captured by PLIF exhibit an interesting phenomenon, i.e., the swirling of the coolant in different directions can influence the counter vortex pair (CVP) in rotating layers, and the coolant swirling in a clockwise direction enhances the right mixing of the CVP with coolant ejection, whereas the coolant swirling in a counterclockwise direction enhances the left-mixing of the CVP with coolant ejection.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
, Boca Raton, FL.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Ito
,
E.
,
Okada
,
I.
,
Tsukagoshi
,
K.
,
Muyama
,
A.
, and
Masada
,
J.
,
2009
, “
Development of Key Technologies for the Next Generation 1700C-Class Gas Turbine
,”
ASME
Paper No. GT2009-59783.
4.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
5.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
6.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
669
679
.
7.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2006
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(
1
), pp.
141
149
.
8.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
9.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.
10.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
11.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
.
12.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
13.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
14.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
15.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178.
16.
Han
,
C.
,
Chi
,
Z.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Optimal Arrangement of Combined-Hole for Improving Film Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011010
.
17.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
Paper No. GT2008-51361.
18.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
19.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2008
, “
A Numerical Study on Increasing Film Cooling Effectiveness Through the Use of Sister Holes
,”
ASME
Paper No. GT2008-50366.
20.
Takeishi
,
K.
,
Komiyama
,
M.
,
Oda
,
Y.
, and
Egawa
,
Y.
,
2014
, “
Aerothermal Investigations on Mixing Flow Field of Film Cooling With Swirling Coolant Flow
,”
ASME J. Turbomach.
,
136
(
5
), p.
051001
.
21.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
,
2011
, “
Effect of Upstream Step on Flat Plate Film-Cooling Effectiveness Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041024
.
22.
Na
,
S.
, and
Shih
,
T. I. P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
23.
Kawabata
,
H.
,
Funazaki
,
K.
,
Nakata
,
R.
, and
Takahashi
,
D.
,
2014
, “
Experimental and Numerical Investigations of Effects of Flow Control Devices Upon Flat-Plate Film Cooling Performance
,”
ASME J. Turbomach.
,
136
(
6
), p.
061021
.
24.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling: Part I—Aerodynamic Results
,”
ASME
Paper No. GT2007-27077
.
25.
Chen
,
S. P.
,
Chyu
,
M. K.
, and
Shih
,
T. I. P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1085
1094
.
26.
Xia
,
Q.
, and
Zhong
,
S.
,
2012
, “
A PLIF and PIV Study of Liquid Mixing Enhanced by a Lateral Synthetic Jet Pair
,”
Int. J. Heat Fluid Flow
,
37
, pp.
64
73
.
27.
Pu
,
J.
,
Yu
,
J.
,
Wang
,
J.
,
Yang
,
W.
,
Zhang
,
Z.
, and
Wang
,
L.
,
2014
, “
An Experimental Investigation of Secondary Flow Characteristics in a Linear Turbine Cascade With Upstream Converging Slot-Holes Using TR-PIV
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
56
71
.
28.
Coletti
,
F.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
An Inclined Jet in Crossflow Under the Effect of Streamwise Pressure Gradients
,”
Exp. Fluids
,
54
(
9
), pp.
1
16
.
29.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.
30.
Schubring
,
D.
,
Ashwood
,
A. C.
,
Shedd
,
T. A.
, and
Hurlburt
,
E.
,
2010
, “
Planar Laser-Induced Fluorescence (PLIF) Measurements of Liquid Film Thickness in Annular Flow. Part I: Methods and Data
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
815
824
.
31.
Takeishi
,
K.
,
Oda
,
Y.
, and
Kondo
,
S.
,
2014
, “
Film Cooling With Swirling Coolant Flow on a Flat Plate and the Endwall of High-Loaded First Nozzle
,”
ASME
Paper No. GT2014-25798.
You do not currently have access to this content.