The high pressure (HP) rotor tip and over-tip casing are often life-limiting features in the turbine stages of current gas turbine engines. This is due to the high thermal load and high temperature cycling at both low and high frequencies. In the last few years, there have been numerous studies of turbine tip heat transfer. Comparatively fewer studies have considered the over-tip casing heat transfer. This is in part, no doubt, due to the more onerous test facility requirements to validate computational simulations. Because the casing potential field is dominated by the passing rotor, to perform representative over-tip measurements a rotating experiment is an essential requirement. This paper details the measurements taken on the Oxford turbine research facility (OTRF), an engine-scale rotating turbine facility which replicates engine-representative conditions of Mach number, Reynolds number, and gas-to-wall temperature ratio. High density arrays of miniature thin-film heat-flux gauges were used with a spatial resolution of 0.8 mm and temporal resolution of ∼120 kHz. The small size of the gauges, the high frequency response, and the improved processing methods allowed very detailed measurements of the heat transfer in this region. Time-resolved measurements of TAW and Nu are presented for the casing region (−30% to +125% CAX) and compared to other results in the literature. The results provide an almost unique data set for calibrating computational fluid dynamics (CFD) tools for heat transfer prediction in this highly unsteady environment dominated by the rotor over-tip flow.

References

References
1.
Chana
,
K. S.
, and
Haller
,
B.
,
2009
, “
Novel Turbine Rotor Shroud Film-Cooling Design and Validation, Part 1
,”
ASME
Paper No. GT2009-60242.
2.
Chana
,
K. S.
, and
Haller
,
B.
,
2009
, “
Novel Turbine Rotor Shroud Film-Cooling Design and Validation, Part 2
,”
ASME
Paper No. GT2009-60246.
3.
Collins
,
M. C. J.
, and
Povey
,
T.
,
2014
, “
Exploitation of Acoustic Effects in Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102602
.
4.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Norton
,
R. J. G.
, and
Cao
,
Y.
,
1985
, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,” 21st
AIAA, SAE, ASME, and ASEE
,
Joint Propulsion Conference, Monterey, CA
, p.
1985
.
5.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
(
3
), pp.
502
507
.
6.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading–Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
7.
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
125
(
3
), pp.
513
520
.
8.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.
9.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions.(I). Time-Mean Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
933
944
.
10.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions.(II). Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.
11.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
, and
Oldfield
,
M. L. G.
,
1988
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Conditions
,”
ASME
Paper No. 88-GT-144.
12.
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2008
, “
The Effects of Blade Passing on the Heat Transfer Coefficient of the Overtip Casing in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
130
(
4
), p.
041009
.
13.
El-Gabry
,
L. A.
, and
Ameri
,
A. A.
,
2011
, “
Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage
,”
ASME J. Turbomach.
,
133
(
3
), p.
031010
.
14.
Collins
,
M. C. J.
,
Chana
,
K.
, and
Povey
,
T.
,
2015
, “
New Technique for the Fabrication of Miniature Thin Film Heat Flux Gauges
,”
Meas. Sci. Technol.
,
26
(
2
), pp.
25303
25312
.
15.
Chana
,
K.
,
Cardwell
,
D.
, and
Jones
,
T.
,
2013
, “
A Review of the Oxford Turbine Research Facility
,”
ASME
Paper No. GT2013-95687.
16.
Jones
,
T. V.
,
1995
, “
The Thin Film Heat Transfer Gauges-a History and New Developments
,”
4th National UK Heat Transfer Conference, IMechE Conference Transaction
, Manchester, UK, Sept. 26–27.
17.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
,
1978
, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
14
(
5
), pp.
738
749
.
18.
Oldfield
,
M. L. G.
,
Burd
,
H. J.
, and
Doe
,
N. G.
,
1984
, “
Design of Wide-Bandwidth Analogue Circuits for Heat Transfer Instrumentation in Transient Tunnels
,”
Heat Mass Transfer Rotating Mach.
,
1
(
1
), pp.
233
258
.
19.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
20.
Oldfield
,
M. L. G.
, and
Beard
,
P. F.
,
2012
, “
HTA3 Heat Transfer Amplifier 3 Version 1.0
,” Oxford University Engineering Laboratory OUEL Report, Nov. 1, 2012, Report No. 01112012.
21.
Anthony
,
R. J.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1999
, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,”
5th ASME/JSME Thermal Engineering Joint Conference
, San Diego, CA, Mar. 14–19, Paper No. AJTE99-6159.
22.
Anthony
,
R. J.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2004
, “
Unsteady Surface Heat Flux Under a Three-Dimensional Crossflow Boundary Layer
,”
AIAA
Paper No. 2004-1344.
23.
Gröber
,
H.
, and
Erk
,
S.
,
1961
,
Fundamentals of Heat Transfer
,
McGraw-Hill
,
New York
.
24.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R. J.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091601
.
25.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
26.
Moore
,
J. O. H. N.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
27.
Heyes
,
F. J. G.
,
Dailey
,
G. M.
, and
Hodson
,
H. P.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
28.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
.
29.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
30.
Yaras
,
M. L.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades. Part I: Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
.
31.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades. Part II: Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
660
667
.
32.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
33.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.
34.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1987
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1159
1168
.
35.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
,
2000
, “
The Development of a New Direct-Heat-Flux Gauge for Heat-Transfer Facilities
,”
Meas. Sci. Technol.
,
11
(
4
), p.
342
.
You do not currently have access to this content.