Large eddy simulations validated with the aid of direct numerical simulation (DNS) are used to study the concerted action of reduced frequency and flow coefficient on the performance of the T106A low-pressure turbine profile. The simulations are carried out by using a discretization in space and time that allows minimizing the accuracy loss with respect to DNS. The reference Reynolds number is 100,000, while reduced frequency and flow coefficient cover a range wide enough to provide valid qualitative information to designers. The various configurations reveal differences in the loss generation mechanism that blends steady and unsteady boundary layer losses with unsteady wake ingestion losses. Large values of the flow coefficient can alter the pressure side unsteadiness and the consequent loss generation. Low values of the flow coefficient are associated with wake fogging and reduced unsteadiness around the blade. The reduced frequency further modulates these effects. The simulations also reveal a clear trend of losses with the wake path, discussed by conducting a loss-breakdown analysis that distinguishes boundary layer from wake distortion losses.

References

References
1.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2001
, “
The Application of Ultra-High Lift Blading in the BR715 LP Turbine
,”
ASME
Paper No. 2001-GT-0436.
2.
Gier
,
J.
, and
Ardey
,
S.
,
2001
, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,”
ASME
Paper No. 2001-GT-0197.
3.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.
4.
Stadtmüller
,
P.
,
2001
, “
Investigation of Wake-Induced Transition on the LP Turbine Cascade T106A-EIZ
,” DFG-Verbundprojekt Fo 136/11 Version 1.1.
5.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part II—Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
6.
Opoka
,
M. M.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2008
, “
Boundary Layer Transition on the High Lift T106A Low-Pressure Turbine Blade With an Oscillating Downstream Pressure Field
,”
ASME J. Turbomach.
,
130
(
2
), p.
021009
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP Turbines
,”
ASME J. Turbomach.
,
119
(
2
), pp.
225
237
.
8.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
9.
Schobeiri
,
M. T.
, and
Ozturk
,
B.
,
2004
, “
Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME
Paper No. GT2004-53929.
10.
Medic
,
G.
, and
Sharma
,
O. P.
,
2012
. “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878.
11.
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part II: Blade-Wake Interaction
,”
ASME J. Turbomach.
,
135
(
1
), p.
011011
.
12.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
13.
Hoffenberg
,
R.
, and
Sullivan
,
J. P.
,
1998
, “
Measurement and Simulation of Wake Deceleration
,”
AIAA
Paper No. 98-0522.
14.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery
,”
ASME
Paper No. GT2006-905.
15.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.
16.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
(
3
), pp.
295
329
.
17.
Sandberg
,
R. D.
,
Pichler
,
R.
,
Chen
,
L.
,
Johnstone
,
R.
, and
Michelassi
,
V.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines: Part I—Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
18.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
19.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
You do not currently have access to this content.