In many industrial areas, downsizing the pumping system is a decisive aim of the designers. The reasons could be multiple means; in a single-stage pump, increasing the power density of the pump means actually reducing the production costs. The main goal of this study was the comparison in terms of power density of a conventionally designed single-stage pump with a novel design concept based on the counter-rotating (CR) principle. In order to simplify the experimental investigations for the present study, the volute geometry was fixed instead of reducing the pump outflow diameters for a fixed design point. The energy concentration was then increased by raising the developed hydraulic power within the same envelope. The design of the impellers was carried out with an in-house design tool, based on inverse design method. Numerical results highlight the advantageousness of the new layout, in terms of power concentration, compared to the conventional impeller. Numerical predictions are also in significant agreement with the experimental investigation results, obtained in a specifically developed CR motors test rig. The experimental optimization of the rotational speed ratio of the CR impellers has shown the possibility to further increase the head in off-design condition and thereby the pump power density.

References

References
1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
, Concepts ETI, Norwich, VT.
2.
Itou
,
S.
,
Fujimura
,
M.
,
Nonoue
,
S.
, and
Kanemoto
,
T.
,
2011
, “
Counter-Rotating Type Pump Unit (Rotational Behaviors)
,”
AIP Conf. Proc.
,
1225
, pp.
423
432
.
3.
Kanemoto
,
T.
, and
Oba
,
S.
,
2004
, “
Proposition of Unique Pumping System With Counter-Rotating Mechanism
,”
Int. J. Rotating Mach.
,
10
(
4
), pp.
233
240
.
4.
Momosaki
,
S.
,
Usami
,
S.
,
Watanabe
,
S.
, and
Furukawa
,
A.
,
2010
, “
Numerical Simulation of Internal Flow in a Contra-Rotating Axial Flow Pump
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p. 012046.
5.
Shigemitsu
,
T.
,
Furukawa
,
A.
,
Watanabe
,
S.
,
Okuma
,
K.
, and
Fukutomi
,
J.
,
2007
, “
Experimental Analysis of Internal Flow of Contra-Rotating Axial Flow Pump
,”
8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows
(
ISAIF
), Lyon, France, July 2–5, Paper No. ISAIF8-0034.
6.
Cao
,
A.
,
Honda
,
H.
,
Yoshimura
,
H.
,
Watanabe
,
S.
, and
Furukawa
,
A.
,
2014
, “
Experimental Investigation of Blade Rows Interactions in Contra-Rotating Axial Flow Pump
,”
ASME
Paper No. FEDSM2014(21901).
7.
Wang
,
J.
,
Ravelet
,
F.
, and
Bakir
,
F.
,
2014
, “
Influence of Design Parameters on the Global Performances of Low-Speed Counter-Rotating Axial-Flow Fans
,”
ASME
Paper No. FEDSM2014(22172).
8.
Kanemoto
,
T.
,
Kimura
,
S.
,
Oba
,
S.
, and
Satoh
,
M.
,
2002
, “
Smart Control of Axial Flow Pump Performance by Means of Counter-Rotation
,”
JSME Int. J.
, Ser. B,
45
(
2
), pp.
293
300
.
9.
Burgoyne
,
D.
,
Cuerel
,
T.
,
Luget
,
D. J.
,
Miller
,
D. S.
,
Nuttall
,
P. H.
,
Pearsall
,
I.
,
Pollard
,
D.
, and
Standish
,
D. W.
,
2003
,
Radial, Mixed and Axial Flow Pumps: Introduction
, ESDU International, London.
10.
Zhang
,
D.-S.
,
Shi
,
W. G.
,
Chen
,
B.
, and
Guan
,
X. F.
,
2010
, “
Unsteady Flow Analysis and Experimental Investigation of Axial-Flow Pump
,”
J. Hydrodyn.
,
22
(
1
), pp.
35
43
.
11.
Shigemitsu
,
T.
,
Furukawa
,
A.
,
Watanabe
,
S.
,
Okuma
,
K.
, and
Fukutomi
,
J.
,
2009
, “
Internal Flow Measurement With LDV at Design Point of Contra-Rotating Axial Flow Pump
,”
J. Fluid Sci. Technol.
,
4
(
3
), pp.
723
734
.
12.
Cao
,
L. L.
,
Watanabe
,
S.
,
Imanishi
,
T.
,
Yoshimura
,
H.
, and
Furukawa
,
A.
,
2013
, “
Blade Rows Interaction in Contra-Rotating Axial Flow Pump Designed With Different Rotational Speed Concept
,”
6th International Conference on Pumps and Fans With Compressors and Wind Turbines
(
ICPF2013
), Beijing, China, Sept. 19–22, Vol.
52
, p. 022004.
13.
Furukawa
,
A.
,
Shigemitsu
,
T.
, and
Watanabe
,
S.
,
2007
, “
Performance Test and Flow Measurement of Contra-Rotating Axial Flow Pump
,”
J. Therm. Sci.
,
16
(
1
), pp.
7
13
.
14.
Tosin
,
S.
,
Friedrichs
,
J.
,
Farooqi
,
R.
, and
Dreiss
,
A.
,
2014
, “
New Approach for Multi-Rotor Mixed-Flow Pump Design and Optimization
,”
ASME
Paper No. FEDSM2014-21595.
15.
Tosin
,
S.
,
Friedrichs
,
J.
,
Sperling
,
J.
, and
Kozulovic
,
D.
,
2014
, “
Aerodynamic Optimization of Turboprop Turbine Blades Using a Response Surface Methodology Based Algorithm
,”
ASME
Paper No. FEDSM2014-21752.
16.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin
.
17.
Tosin
,
S.
,
Friedrichs
,
J.
,
Dreiss
,
A.
,
Schiavello
,
B.
, and
Elebiary
,
K.
,
2015
, “
Experimental Investigation of a Counter-Rotating Mixed-Flow Single Stage Pump Under Cavitation Conditions
,”
ASME
Paper No. AJKFluids2015-33118.
18.
Spring
,
H.
,
1992
, “
Affordable Quasi Three-Dimensional Inverse Design Method for Pump Impellers
,”
9th International Pump Users Symposium
, Houston, TX, Mar. 3–5, pp.
97
110
.
19.
Lauer
,
J.
, and
Stoffel
,
B.
,
1997
, “
Theoretische Untersuchungen zum maximal erreichbaren Wirkungsgrad von Kreiselpumpen
,”
Industriepumpen Kompressoren
,
4
, pp.
222
228
.
20.
Pfleiderer
,
C.
, and
Petermann
,
H.
,
2004
,
Strömungsmaschinen 7 Auflage
,
Springer-Verlag
,
Berlin
.
21.
Howell
,
A. R.
,
1945
, “
Fluid Dynamics of Axial Compressors
,”
Proc. Inst. Mech. Eng.
,
153
(
1
), pp.
441
452
.
22.
Dixon
,
S.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
23.
Sloteman
,
D. P.
,
Robertson
,
D. A.
, and
Margolin
,
L.
,
2004
, “
Demonstration of Cavitation Life Extension for Suction-Stage Impellers in High Energy Pumps
,”
21st International Pump Users Symposium
, Baltimore, MD, Mar. 8–11, pp.
103
115
.
24.
Visser
,
F. C.
,
Brouwers
,
J. J. H.
, and
Jonker
,
J. B.
,
1999
, “
Fluid Flow in a Rotating Low-Specific-Speed Centrifugal Impeller Passage
,”
Fluid Dyn. Res.
,
24
(
5
), pp.
275
292
.
25.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.
26.
Anderson
,
H. H.
,
1993
,
Centrifugal Pumps
,
Elsevier, Oxford, UK
.
27.
ISO
,
2014
, “
Rotodynamic Pumps—Hydraulic Performance Acceptance Test
,” International Organization for Standardization, Geneva, Switzerland, Standard No. DIN EN ISO 9906-2014.
28.
ANSYS
,
2013
, “
ANSYS CFX User Manual
,” Release 14.5.7, ANSYS, Canonsburg, PA.
29.
Menter
,
F. R.
,
1994
, “
Eddy Viscosity Transport Equations and Their Relation to the k-ε Model
,” NASA Ames Research Center, Moffett Field, CA, Technical Memorandum 108854.
30.
Alemi
,
H.
,
Nourbakhsh
,
S. A.
,
Raisee
,
M.
, and
Najafi
,
A. F.
,
2015
, “
Effects of Volute Curvature on Performance of a Low Specific-Speed Centrifugal Pump at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
137
(
4
), p.
041009
.
31.
Kim
,
J.-H.
, and
Kim
,
K.-Y.
,
2012
, “
Analysis and Optimization of a Vaned Diffuser in a Mixed Flow Pump to Improve Hydrodynamic Performance
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071104
.
32.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
356
362
.
33.
Skara
,
V.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2012
, “
Vortex Cavitation Occurring in Radial and Mixed Flow Centrifugal Pump Impellers at Part-Load Operation
,”
International Rotating Equipment Conference and 10th Pump Users International Forum
, Düsseldorf, Germany, Sept. 27–28.
34.
Choi
,
Y.-D.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2005
, “
Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
341
349
.
You do not currently have access to this content.