The present activity was carried out in the framework of the Clean Sky European Research Project ITURB (optimal high-lift turbine blade aeromechanical design), aimed at designing and validating a turbine blade for a geared open-rotor engine. A cold-flow, large-scale, low-speed (LS) rig was built in order to investigate and validate new design criteria, providing reliable and detailed results while containing costs. This paper presents the design of an LS stage and describes a general procedure that allows to scale three-dimensional (3D) blades for LS testing. The design of the stator row was aimed at matching the test-rig inlet conditions and at providing the proper inlet flow field to the blade row. The rotor row was redesigned in order to match the performance of the high-speed (HS) configuration, compensating for both the compressibility effects and different turbine flow paths. The proposed scaling procedure is based on the matching of the 3D blade loading distribution between the real engine environment and the LS facility one, which leads to a comparable behavior of the boundary layer and hence to comparable profile losses. To this end, the datum blade is parameterized, and a neural-network-based methodology is exploited to guide an optimization process based on 3D Reynolds-averaged Navier–Stokes (RANS) computations. The LS stage performance was investigated over a range of Reynolds numbers characteristic of modern low-pressure turbines (LPTs) by using a multi-equation, transition-sensitive, turbulence model. Some comparisons with experimental data available within the project finally proved the effectiveness of the proposed scaling procedure.

References

1.
ACARE
,
2001
, “
European Aeronautics: A Vision for 2020—Meeting Society’s Needs and Winning Global Leadership
,” Advisory Council for Aeronautical Research in Europe, Report No. KI-34-01-827-EN-C.
2.
Banieghbal
,
M. R.
,
Curtis
,
E. M.
,
Denton
,
J. D.
,
Hodson
,
H. P.
,
Huntsman
,
I.
,
Schulte
,
V.
,
Harvey
,
N. W.
, and
Steele
,
A. B.
,
1995
, “
Wake Passing in LP Turbine Blades
,” AGARD Conference, Derby, UK, May 8–12, Technical Report No. AGARD-CP-571, pp. 23-1,23-12.
3.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2001
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
(
2
), pp.
181
188
.
4.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Stieger
,
R. D.
,
Schiffer
,
H. P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High-Lift and Ultra-High-Lift Concepts
,”
ASME J. Turbomach.
,
124
(
3
), pp.
385
392
.
5.
Kyprianidis
,
G. K.
,
Grönstedt
,
T.
,
Ogaji
,
S. O. T.
,
Pilidis
,
P.
, and
Singh
,
R.
,
2011
, “
Assessment of Future Aero-Engine Designs With Intercooled and Intercooled Recuperated Cores
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011701
.
6.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.
7.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.
8.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1993
, “
Advanced Methods for Cascade Testing, 3.1 Annular Cascades
,” Technical Report AGARD-AG-328.
9.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
,
T.
,
2004
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Blade With Emphasis on Separation Prediction
,”
ASME J. Turbomach.
,
126
(
3
), pp.
406
413
.
10.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2009
, “
Boundary Layer Development on a High-Lift LP Turbine Profile Under Passing-Wakes Conditions
,”
ASME
Paper No. GT2009-59889.
11.
Canepa
,
E.
,
Formosa
,
P.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2006
, “
Influence of Aerodynamic Loading on Rotor-Stator Aerodynamic Interaction in a Two-Stage Low Pressure Research Turbine
,”
ASME J. Turbomach.
,
129
(
4
), pp.
765
772
.
12.
Glauert
,
H.
,
1974
, “
A Theory of Thin Aerofoils
,” Aeronautical Research Committee, Reports and Memoranda No. 910.
13.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2001
,
Elements of Gasdynamics
,
Dover Publications
,
Mineola, NY
.
14.
Vera
,
M.
, and
Hodson
,
H. P.
,
2002
, “
Low-Speed Versus High-Speed Testing of LP Turbine Blade-Wake Interaction
,”
16th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines
, Cambridge, UK, Sept. 23–24, Paper No. 7-2.
15.
Marconcini
,
M.
,
Rubechini
,
F.
,
Pacciani
,
R.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2012
, “
Redesign of High-Lift Low Pressure Turbine Airfoils for Low Speed Testing
,”
ASME J. Turbomach.
,
134
(
5
), p.
051017
.
16.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
17.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier–Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.
18.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-257.
19.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.
20.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Cañada, CA
.
21.
Menter
,
F. R.
,
1994
, “
Two-Equations Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Rung
,
T.
,
Lübcke
,
H.
,
Franke
,
M.
,
Xue
,
L.
,
Thiele
,
F.
, and
Fu
,
S.
,
1999
, “
Assessment of Explicit Algebraic Stress Models in Transonic Flows
,”
Engineering Turbulence Modelling and Experiments-4
,
W.
Rodi
and
D.
Laurence
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
659
668
.
23.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
24.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
25.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures
,”
ASME J. Turbomach.
,
136
(
5
), p.
051007
.
26.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.
27.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
28.
Cichocki
,
A.
, and
Unbehauen
,
R.
,
1994
,
Neural Networks for Optimization and Signal Processing
,
Wiley
,
New York
.
29.
Rubechini
,
F.
,
Schneider
,
A.
,
Arnone
,
A.
,
Cecchi
,
S.
, and
Malavasi
,
F.
,
2012
, “
A Redesign Strategy to Improve the Efficiency of a 17-Stage Steam Turbine
,”
ASME J. Turbomach.
,
134
(
3
), p.
031021
.
30.
Bellucci
,
J.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Arcangeli
,
L.
,
Maceli
,
N.
, and
Dossena
,
V.
,
2012
, “
Optimization of a High-Pressure Steam Turbine Stage for a Wide Flow Coefficient Range
,”
ASME
Paper No. GT2012-69529.
31.
Rai
,
M. M.
,
2002
, “
Three-Dimensional Aerodynamic Design Using Artificial Neural Networks
,”
AIAA
Paper No. 2002-0987.
32.
Pianko
,
M.
, and
Wazelt
,
F.
,
1982
, “
Averaging Techniques in Non-Uniform Internal Flows
,” Propulsion and Energetic Panel Working Group 14, Report No. AGARD-AR-182.
33.
Infantino
,
D.
,
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2016
, “
Experimental Analysis of the Aerodynamic Performance of an Innovative Low Pressure Turbine Rotor
,”
J. Therm. Sci.
,
25
(
1
), pp.
22
31
.
You do not currently have access to this content.