Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer-tipped first stage rotor blade were measured using an infrared technique. The blade tip design, obtained from the Solar Turbines, Inc., gas turbine, consists of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit = 9.75 × 105) and 1.0 (Reexit = 1.15 × 106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio, BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds-averaged Navier–Stokes (RANS) equations solver ansys fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer-tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant–leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak HTC on the cavity floor increased with exit Mach/Reynolds number.

References

References
1.
Bunker
,
R.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
22
(
2
), pp.
271
285
.
2.
Bunker
,
R.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
64
79
.
3.
Mayle
,
R. E.
, and
Metzger
,
D. E.
,
1982
, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Seventh International Heat Transfer Conference
, Munich, Germany, Sept. 6–10,
Hemisphere
,
Washington, DC
, pp.
87
92
.
4.
Kline
,
S. J.
, and
McKlintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single sample Experiments
,”
ASME Mech. Eng.
,
75
(1), pp.
3
8
.
5.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
(
4
), pp.
578
584
.
6.
Anto
,
K.
,
Xue
,
S.
,
Ng
,
W. F.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2013
, “
Effects of Tip Clearance Gap and Exit Mach Number on Turbine Blade Tip and Near-Tip Heat Transfer
,”
ASME
Paper No. GT2013-94345.
7.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine—Part 1: Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.
8.
Azad
,
G.
,
Han
,
J. C.
, and
Teng
,
S.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
9.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
10.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Pang Lee
,
C.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach
,
125
(
4
), pp.
778
787
.
11.
Azad
,
G. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.
12.
Azad
,
G. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
725
732
.
13.
Park
,
J. S.
,
Lee
,
S. H.
,
Kwak
,
J. S.
,
Lee
,
W. S.
, and
Chung
,
J. T.
,
2013
, “
Measurement of Blade Tip Heat Transfer and Leakage Flow in a Turbine Cascade With a Multi-Cavity Squealer
,”
ASME
Paper No. TBTS2013-2072.
14.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
15.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
753
759
.
16.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
17.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbine—Part III: Tip Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011008
.
18.
Key
,
N. L.
, and
Art
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
19.
Zhou
,
C.
, and
Hodson
,
H.
,
2011
, “
The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling
,”
ASME J. Turbomach.
,
133
(
4
), p.
041028
.
20.
Naik
,
S.
,
Georgakis
,
C.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2012
, “
Heat Transfer and Film Cooling of Blade Tips and Endwalls
,”
ASME J. Turbomach.
,
134
(
4
), p.
041004
.
21.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
2005
, “
Simultaneous Heat Flux and Velocity Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
127
(
3
), pp.
502
506
.
22.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2006
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
.
23.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade—Part I: Steady Heat Transfer
,”
ASME
Paper No. 2000-GT-0202.
24.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade—Part II: Unsteady Heat Transfer
,”
ASME
Paper No. 2000-GT-0203.
25.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
26.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence, and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
27.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2014
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
28.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
30.
Wu
,
H.
,
Nasir
,
S.
,
Ng
,
W. F.
, and
Moon
,
H. K.
,
2008
, “
Showerhead Film Cooling Performance of a Transonic Turbine Vane at High Freestream Turbulence (Tu = 16%): 3-D CFD and Comparison With Experiment
,”
ASME
Paper No. IMECE 2008-67782.
You do not currently have access to this content.