This paper presents the first detailed experimental performance data for a new centrifugal process compressor test rig. Additional numerical simulations supported by extensive pressure measurements at various positions allow an analysis of the operational and loss behavior of the entire stage and its components. The stage investigated is a high flow rate stage of a single-shaft, multistage compressor for industrial applications and consists of a shrouded impeller, a vaneless diffuser, a U-bend, and an adjoining vaned return channel. Large channel heights due to high flow rates induce the formation of highly three-dimensional flow phenomena and thus enlarge the losses due to secondary flows. An accurate prediction of this loss behavior by means of numerical investigations is challenging. The published experimental data offer the opportunity to validate the used numerical methods at discrete measurement planes, which strengthens confidence in the numerical predictions. CFD simulations of the stage are initially validated with global performance data and extensive static pressure measurements in the vaneless diffuser. The comparison of the pressure rise and an estimation of the loss behavior inside the vaneless diffuser provide the basis for a numerical investigation of the flow phenomena in the U-bend and the vaned return channel. The flow acceleration in the U-bend is further assessed via the measured two-dimensional pressure field on the hub wall. The upstream potential field of the return channel vanes allows an evaluation of the resulting flow angle. Measurements within the return channel provide information about the deceleration and turning of the flow. In combination with the numerical simulations, loss mechanisms can be identified and are presented in detail in this paper.

References

References
1.
Aalburg
,
C.
,
Sezal
,
I.
,
Haigermoser
,
C.
,
Simpson
,
A.
,
Michelassi
,
V.
, and
Sassanelli
,
G.
,
2011
, “
Annular Cascade for Radial Compressor Development
,”
ASME
Paper No. GT2011-46834.
2.
Lenke
,
L.
,
2000
, Numerische Simulation der turbulenten Strömung in Rückführkanälen mehrstufiger Radialverdichter, Shaker Verlag, Aachen, Germany.
3.
Lenke
,
J.
, and
Simon
,
H.
,
1999
, “
Numerical Investigations on the Optimum Design of Return Channel of Multi-Stage Centrifugal Compressor
,”
ASME
Paper No. 99-GT-103.
4.
Lenke
,
J.
, and
Simon
,
H.
,
1998
, “
Numerical Simulation of the Flow Through the Return Channel of Multi-Stage Centrifugal Compressors
,”
ASME
Paper No. 98-GT-255.
5.
Reutter
,
O.
,
Hildebrandt
,
A.
,
Jakiel
,
C.
,
Raitor
,
T.
, and
Voss
,
C.
,
2011
, “
Automated Aerodynamic Optimization of a Return Channel Vane of a MultiStage Compressor
,” 9th European Conference on Turbomachinary,
ETC 2011
(ETC 2011), Istanbul, Turkey, Mar. 21–25, Paper No. ETC2011-054.
6.
Hildebrandt
,
A.
,
2011
, “
Aerodynamic Optimisation of a Centrifugal Compressor Return Channel and U-Turn With Genetic Algorithms
,”
ASME
Paper No. GT2011-450876.
7.
Rothstein
,
E.
,
1984
, “
Experimentelle und theoretische Untersuchung der Strömungsvorgänge in Rückführkanälen von Radialverdichterstufen, insbesondere solcher mit geringen Kanalbreiten
,” Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
8.
Japikse
,
D.
, and
Oliphant
,
K.
,
1998
, “Concepts ETI, INC. (CETI) Return Channel and Deswirl Cascade,” ERCOFTAC Turbomachinery Workshop Test Case F3, Aussois, France, p. 16.
9.
Simpson
,
A.
,
Aalburg
,
C.
,
Schmitz
,
M.
,
Pannekeet
,
R.
,
Larisch
,
F.
, and
Michelassi
,
V.
,
2008
, “
Design, Validation and Application of a Radial Cascade for Centrifugal Compressors
,”
ASME
Paper No. GT2008-51262.
10.
Schmitz
,
M.
,
Simpson
,
A.
,
Aalburg
,
C.
, and
Michelassi
,
V.
,
2008
, “
Development of a Sector Test Rig for Multistage Radial Compressor Stators
,” ISROMAC, Paper No. ISROMAC12-2008-20254.
11.
Aalburg
,
C.
,
Simpson
,
A.
,
Schmitz
,
M. B.
,
Michelassi
,
V.
,
Evangelisti
,
S.
,
Belardini
,
E.
, and
Ballarini
,
V.
,
2008
, “
Design and Testing of Multistage Centrifugal Compressors With Small Diffusion Ratios
,”
ASME
Paper No. GT2008-51263.
12.
Ellis
,
G. O.
,
1960
, “
Crossover Systems Between the Stages of Centrifugal Compressors
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
155
168
.
13.
Isom
,
M. P.
,
1956
, “
The Three-Dimensional Boundary Layer in a Vaneless Diffuser
,” M.S. thesis, Electrical Engineering Department, MIT, Cambridge, MA.
14.
Franz
,
H.
,
2015
, “
Numerische Untersuchung der Durchströmung einer Rückführung eines mehrstufigen Radialverdichters
,” Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
15.
Franz
,
H.
,
Rube
,
C.
,
Wedeking
,
M.
, and
Jeschke
,
P.
,
2015
, “
Numerical Investigation of a High Flow Centrifugal Compressor Stage With Return Channel
,”
ASME
Paper No. GT2015-43640.
16.
Grabe
,
M.
,
2011
,
Grundriss der generalisierten Gauß'schen Fehlerrechnung
,
Springer
,
Heidelberg, Germany
.
17.
Rossbach
,
T.
,
Rube
,
C.
,
Wedeking
,
M.
,
Franz
,
H.
, and
Jeschke
,
P.
,
2015
, “
Performance Measurements of a Full-Stage Centrifugal Process Gas Compressor Test Rig
,” 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (
ETC11
), Madrid, Spain, Mar. 23-27, Paper No. ETC2015-084.
18.
Nürnberger
,
D.
, and
Greza
,
H.
,
2002
, “
Numerical Investigation of Unsteady Transitional Flow in Turbomachinery Components Based on a RANS Approach
,”
Flow, Turbul. Combust.
,
69
(
3
), pp.
331
353
.
19.
Kügeler
,
E.
,
Weber
,
A.
, and
Lisiewicz
,
S.
,
2001
, “
Combination of a Transition Model With a Two Equation Turbulence Model and Comparison With Experimental Results
,”
4th European Conference on Turbomachinery
, Florence, Italy, Mar. 20-23, pp.
877
887
.
20.
Zachcial
,
A.
,
2006
,
Mischungsebenmodellierung zur Analyse der räumlichen Strömungen in mehrstufigen Turbomaschinenkomponenten
,
Shaker Verlag, Aachen
,
Germany
.
21.
Wilcox
,
D. C.
,
1994
, “Turbulence Modeling for CFD,”
DCW Industries
,
La Canada, CA
.
22.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
, Kyoto, Japan, Aug. 16–18, pp.
10.4.1
10.4.6
.
23.
Weber
,
A.
,
2012
, “
Forschungslabor Hightech-Prozessverdichter—Theoretische Arbeiten am DLR Köln
,” DLR, Köln, Germany, Technical Report No. w0805ht004a.
24.
Rothstein
,
E.
, and
Gallus
,
H.
,
1983
,
Untersuchung von beschaufelten Rückführkanälen mehrstufiger Radialverdichter
,
VDI-Berichte
, Düsseldorf, Nr. 487, pp. 209–220.
You do not currently have access to this content.