External deposition on a slot film cooled nozzle guide vane, subjected to nonuniform inlet temperatures, was investigated experimentally and computationally. Experiments were conducted using a four-vane cascade, operating at temperatures up to 1353 K and inlet Mach number of approximately 0.1. Surveys of temperature at the inlet and exit planes were acquired to characterize the form and migration of the hot streak. Film cooling was achieved on one of the vanes using a single spanwise slot. Deposition was produced by injecting sub-bituminous ash particles with a median diameter of 6.48 μm upstream of the vane passage. Several deposition tests were conducted, including a baseline case, a hot streak-only case, and a hot streak and film cooled case. Results indicate that capture efficiency is strongly related to both the inlet temperature profiles and film cooling. Deposit distribution patterns are also affected by changes in vane surface temperatures. A computational model was developed to simulate the external and internal flow, conjugate heat transfer, and deposition. Temperature profiles measured experimentally at the inlet were applied as thermal boundary conditions to the simulation. For deposition modeling, an Eulerian–Lagrangian particle tracking model was utilized to track the ash particles through the flow. An experimentally tuned version of the critical viscosity sticking model was implemented, with predicted deposition rates matching experimental results well. Comparing overall deposition rates to results from previous studies indicates that the combined effect of nonuniform inlet temperatures and film cooling cannot be accurately simulated by simple superposition of the two independent effects; thus, inclusion of both conditions in experiments is necessary for realistic simulation of external deposition.

References

References
1.
Bons
,
J. P.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
2.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.
3.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.
4.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multi-Phase Particle Deposition on a Non-Axisymmetric Contoured Endwall With Film-Cooling
,”
ASME
Paper No. GT2012-68174.
5.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Experimental Simulation of Contaminant Deposition on a Film-Cooled Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(5), p. 051008.
6.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
7.
Murphy
,
R. G.
,
Nix
,
A. C.
,
Lawson
,
S. A.
,
Straub
,
D.
, and
Beer
,
S. K.
,
2012
, “
Preliminary Experimental Investigation of the Effects of Particulate Deposition on IGCC Turbine Film-Cooling in a High-Pressure Combustion Facility
,”
ASME
Paper No. GT2012-68806.
8.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(2), p. 021033.
9.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
10.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behavior of Adhesive, Elastic-Plastic Sheres
,”
Powder Technol.
,
99
(
2
), pp.
154
162
.
11.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With the Application to a Leading Edge Turbine Vane
,”
ASME
Paper No. GT2010-23655.
12.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Impacts in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623.
13.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(3), pp. 544–553.
14.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(1), pp. 32–43.
15.
Ong
,
J.
, and
Miller
,
R.
,
2008
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME
Paper No. GT2008-50971.
16.
Qingjun
,
Z.
,
Hulshe
,
W.
,
Xlaolu
,
Z.
, and
Jianzhong
,
X.
,
2007
, “
Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine
,”
Int. J. Rotating Mach.
,
2007
, p.
56097
.
17.
Chambers
,
J. C.
,
1985
, “
The 1982 Encounter of British Airways 747 With the Mt. Galunggung Eruption Cloud
,”
AIAA
Paper No. 85-0097.
18.
Casaday
,
B.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2012
, “
Effect of Hot Streaks on Ash Deposition in an Uncooled Turbine Vane Passage
,”
AIAA
Paper No. 2012-0474.
19.
Casaday
,
B.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
,
M.
,
Clum
,
C.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2013
, “
Deposition With Hot Streaks in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(4), p. 041017.
20.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(4), p. 041013.
21.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(10), p. 101901.
22.
Borello
,
D.
,
D'Angeli
,
L.
,
Salvagni
,
A.
,
Venturini
,
P.
, and
Rispoli
,
F.
,
2014
, “
Study of Particles Deposition in Gas Turbine Blades in Presence of Film Cooling
,”
ASME
Paper No. GT2014-26250.
23.
Prenter
,
R.
,
Whitaker
,
S.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2014
, “
The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane
,”
ASME
Paper No. GT2014-27171.
24.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Measurement and Prediction of Hot Streak Profiles Generated by Axially Opposed Dilution Jets
,”
AIAA
Paper No. 2015-0304.
25.
Whitaker
,
S.
,
Prenter
,
R.
, and
Bons
,
J.
,
2015
, “
The Effect of Free-Stream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(12), p. 121001.
26.
ANSYS
,
2011
, “
Ansys Fluent User's Guide
,”
ANSYS Inc.
,
Canonsburg, PA
.
27.
N'Dala
,
I.
,
Cambier
,
F.
,
Anseau
,
M. R.
, and
Urbain
,
G.
,
1984
, “
Viscosity of Liquid Feldspars. Part I: Viscosity Measurements
,”
Br. Ceram. Trans. J.
,
83
(
4
), pp.
108
112
.
28.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy and Fuels
,
9
(
2
), pp.
277
283
.
29.
Dorney
,
D.
, and
Schwab
,
J.
,
1996
, “
Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine
,”
ASME J. Turbomach.
,
118
(4), pp. 783–791.
30.
Whitaker
,
S. M.
,
Reilly
,
D.
, and
Bons
,
J. P.
,
2013
, “
A Survey of Airborne Particle Impact Characteristics Using High Speed Particle Shadow Velocimetry
,”
AIAA
Paper No. 2013-2484.
You do not currently have access to this content.