Transition of the state of the boundary layer from laminar to turbulent plays an important role in the aerodynamic loss generation on turbine airfoils. An accurate simulation of the transition process and of the state of the boundary layer is therefore crucial for prediction of the aerodynamic efficiency of components in rotating machines. A lot of the research in the past years dealt with the transition over laminar separation bubbles, especially concerning flows in low pressure turbines (LPTs) of air jet engines. Nevertheless, bypass transition is also frequent in turbomachines at higher Reynolds numbers as well as for properly designed profiles. Compared with transition over a laminar separation bubble, a bypass transition is experimentally much more difficult to detect with standard measurement techniques. In such cases it becomes necessary to use more sophisticated techniques, such as hot-film anemometry, hot wires, or Preston probes in order to obtain accurate information on the state of the boundary layer. The study presented is carried out using a linear cascade with a LPT blade profile with strong front loading and gentle flow deceleration at the rear suction side of the blade. Measurements were performed at the high-speed cascade wind tunnel of the Institute of Jet Propulsion at engine relevant Mach and Reynolds numbers. Emphasis is put on the evaluation of the different transition processes at midspan and its influence on profile losses. The data postprocessing was adapted for compressible flows, which allows a more accurate determination of the transition area as well as qualitatively better distributions of the wall shear stress. Finally, comparisons with simulations, using computational fluid dynamics (CFD) tools, are performed and fields for improvement of the turbulence and transition models are identified.

References

References
1.
Gier
,
J.
,
Franke
,
M.
,
Hübner
,
N.
, and
Schröder
,
T.
,
2008
, “
Designing LP Turbines for Optimized Airfoil Lift
,”
ASME
Paper No. GT2008-51101. 10.1115/GT2008-51101
2.
Schröder
,
T.
,
Baier
,
R.
, and
Broichhausen
,
K.
,
1992
, “
Laminar Flow and Unsteady Phenomena in Boundary Layers of Turbomachinery Blades
,”
1st European Forum on Laminar Flow Technology
, Hamburg, Mar. 16–18, Paper No. 92-01-036.
3.
Schulte
,
V.
, and
Hodson
,
H.
,
1994
, “
Wake-Separation Bubble Interaction in Low Pressure Turbines
,”
AIAA
Paper No. 94-2931.10.2514/6.1994-2931
4.
Schulte
,
V.
, and
Hodson
,
H.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
120
(
1
), pp.
28
35
.10.1115/1.2841384
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME J. Turbomach.
,
119
(
3
), pp.
426
444
.10.1115/1.2841142
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP
,”
ASME J. Turbomach.
,
119
(
2
), pp.
225
237
.10.1115/1.2841105
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 4 of 4—Computations and Analysis
,”
ASME J. Turbomach.
,
119
(
1
), pp.
128
139
.10.1115/1.2841001
9.
Engber
,
M.
, and
Fottner
,
L.
,
1995
, “
The Effect of Incoming Wakes on Boundary Layer Transition of a Highly Loaded Turbine Cascade
,” Paper No. AGARD CP 571.
10.
Wissink
,
J.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.10.1115/1.2218517
11.
Haselbach
,
F.
,
Schiffer
,
H.-P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2002
, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
45
51
.10.1115/1.1415737
12.
Volino
,
R. J.
,
2003
, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generating Jets
,”
ASME J. Turbomach.
,
125
(
4
), pp.
765
777
.10.1115/1.1626686
13.
Martinstetter
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade
,”
ASME
Paper No. GT2010-22739. 10.1115/GT2010-22739
14.
Mack
,
M.
,
Niehuis
,
R.
,
Fiala
,
A.
, and
Guendogdu
,
Y.
,
2013
, “
Boundary Layer Control on a Low Pressure Turbine Blade by Means of Pulsed Blowing
,”
ASME J. Turbomach.
,
135
(
5
), p.
051023
.10.1115/1.4023104
15.
Praisner
,
T.
,
Grover
,
E.
,
Knezevici
,
D.
,
Popovic
,
I.
,
Sjolander
,
S.
,
Clark
,
J.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
.10.1115/1.4024796
16.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
17.
Preston
,
J. H.
,
1954
, “
The Determination of Turbulent Skin Friction by Means of Pitot Tubes
,”
J. R. Aeronaut. Soc.
,
58
, pp.
109
121
.
18.
Reshotko
,
E.
,
2008
, “
Paths to Transition in Wall Layers
,”
AVT/VKI Lecture Series: Advances in Laminar-Turbulent Transition Modelling
, von Karman Institute, Rhode-St.-Genese, Belgium, June 9–12, Paper No. RTO-EN-AVT-151.
19.
Wakelam
,
C. T.
,
Niehuis
,
R.
, and
Hoeger
,
M.
,
2013
, “
A Comparison of Three Low Pressure Turbine Designs
,”
ASME J. Turbomach.
,
135
(
5
), p.
051026
.10.1115/1.4023017
20.
Stotz
,
S.
,
Wakelam
,
C. T.
,
Guendogdu
,
Y.
, and
Niehuis
,
R.
,
2014
, “
Detection of Boundary Layer Transition on a Low Pressure Turbine Airfoil Without Separation Using a Preston Tube and Hot Film Anemometry
,”
15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(ISROMAC-15), Honolulu, HI, Feb. 24–28, Paper No. 2014-143.
21.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High-Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
, Genoa, Italy, Oct. 24–25.
22.
Amecke
,
J.
,
1967
, “
Auswertung Von Nachlaufmessungen an Ebenen Schaufelgittern
,” AVA Göttingen, Göttingen, Germany, Technical Report No. 67 A 49.
23.
Young
,
A. D.
, and
Maas
,
J. N.
,
1937
, “
The Behavior of a Pitot-Tube in a Transverse Total-Pressure Gradient
,” Aeronautical Resources Council, London, ARC Report and Memoranda No. 1770.
24.
Bellhouse
,
B. J.
, and
Schultz
,
D. L.
,
1966
, “
Determination of Mean and Dynamic Skin Friction, Separation and Transition in Low-Speed Flow With a Thin-Film Heated Element
,”
J. Fluid Mech.
,
24
(
2
), pp.
379
400
.10.1017/S0022112066000715
25.
Hodson
,
H. P.
,
1983
, “
The Detection of Boundary-Layer Transition and Separation in High Speed Turbine Cascades
,”
7th Symposium on Measuring Techniques for Transonic and Supersonic Flow in Cascades and Turbomachines
, Aachen, Germany, Sept. 21–23.
26.
Hänsel
,
H.
,
1967
,
Grundzüge der Fehlerrechnung
,
Deutscher Verlag der Wissenschaften
,
Berlin
.
27.
Menter
,
F.
,
Langtry
,
R.
,
Likki
,
S.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation
,”
ASME
Paper No. GT2004-53452. 10.1115/GT2004-53452
28.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flüssigkeiten mit Kleiner Reibung
,”
Z. Math. Phys.
,
56
, pp.
1
37
(Translated in NACA TM 1256).
29.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
New York
.
30.
Griffin
,
P. C.
, and
Davies
,
M. R.
,
2002
, “
On the Use of Hot Film Sensors in the Investigation of Fluid Dynamic Phenomena in the Near Wall Region
,”
16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Cambridge, UK, Sept. 23–24, Paper No. 3-1.
31.
Hilgenfeld
,
L.
,
2006
, “
Turbulenzstrukturen in hochbelasteten Transsonik-Verdichtergittern unter Berücksichtigung der Verdichtungsstoß-Grenzschicht-Intereferenz
,” Ph.D., thesis, Universität der Bundeswehr München, Neubiberg, Germany.
32.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.10.1017/S0022112000002469
33.
Schlichting
,
H.
,
1965
,
Grenzschicht-Theorie
,
5th ed.
,
Verlag G. Braun
,
Karlsruhe, Germany
.
34.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
1998
, “
Shear Sheltering and the Continuous Spectrum of the Orr–Sommerfeld Equation
,”
Phys. Fluids
,
10
(
8
), pp.
1070
6631
.10.1063/1.869716
You do not currently have access to this content.