This paper presents the application of the gradient span analysis (GSA) method to the multipoint optimization of the two-dimensional LS89 turbine distributor. The cost function (total pressure loss) and the constraint (mass flow rate) are computed from the resolution of the Reynolds-averaged Navier–Stokes equations. The penalty method is used to replace the constrained optimization problem with an unconstrained problem. The optimization process is steered by a gradient-based quasi-Newton algorithm. The gradient of the cost function with respect to design variables is obtained with the discrete adjoint method, which ensures an efficient computation time independent of the number of design variables. The GSA method gives a minimal set of operating conditions to insert into the weighted sum model to solve the multipoint optimization problem. The weights associated to these conditions are computed with the utopia point method. The single-point optimization at the nominal condition and the multipoint optimization over a wide range of conditions of the LS89 blade are compared. The comparison shows the strong advantages of the multipoint optimization with the GSA method and utopia-point weighting over the traditional single-point optimization.

References

1.
Pironneau
,
O.
,
1974
, “
On Optimum Design in Fluid Mechanics
,”
J. Fluid. Mech.
,
64
(
1
), pp.
97
110
.10.1017/S0022112074002023
2.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.10.1007/BF01061285
3.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2010
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011026
.10.1115/1.4001166
4.
Li
,
H.
,
Song
,
L.
,
Li
,
Y.
, and
Feng
,
Z.
,
2010
, “
2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method
,”
ASME J. Turbomach.
,
133
(
3
), p.
031014
.10.1115/1.4001234
5.
He
,
L.
, and
Wang
,
D. X.
,
2010
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.10.1115/1.4000544
6.
Wang
,
D. X.
,
He
,
L.
,
Li
,
Y. S.
, and
Wells
,
R. G.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
,
132
(
2
), p.
021012
.10.1115/1.3103928
7.
Walther
,
B.
, and
Nadarajah
,
S.
,
2012
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single-Stage Transonic Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021017
.10.1115/1.4007502
8.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2013
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.10.1115/1.4025164
9.
Drela
,
M.
,
1998
, “
Pros and Cons of Airfoil Optimization
,”
Frontiers of Computational Fluid Dynamics
,
World Scientific
,
Singapore
, pp.
363
381
.
10.
Das
,
I.
, and
Dennis
,
J. E.
,
1997
, “
A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Multidiscip. Optim.
,
14
(
1
), pp.
63
69
.10.1007/BF01197559
11.
Arts
,
T.
, and
Lambert de Rouvroit
,
M.
,
1992
, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.10.1115/1.2927978
12.
Gallard
,
F.
,
Mohammadi
,
B.
,
Montagnac
,
M.
, and
Meaux
,
M.
, “
An Adaptive Multipoint Formulation for Robust Parametric Optimization
,”
J. Optim. Theory Appl.
,
165
(1) (in press).10.1007/s10957-014-0595-6
13.
Gallard
,
F.
,
Meaux
,
M.
,
Montagnac
,
M.
, and
Mohammadi
,
B.
,
2013
, “
Aerodynamic Aircraft Design for Mission Performance by Multipoint Optimization
,”
AIAA
Paper No. 2013-2582.10.2514/6.2013-2582
14.
Gallard
,
F.
,
2014
, “
Aircraft Shape Optimization for Mission Performance
,” Ph.D., thesis, Université de Toulouse-ISAE, Toulouse, France.
15.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
16.
Li
,
W.
,
Huyse
,
L.
, and
Padula
,
S.
,
2002
, “
Robust Airfoil Optimization to Achieve Drag Reduction Over a Range of Mach Numbers
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
38
50
.10.1007/s00158-002-0212-4
17.
Zingg
,
D.
, and
Elias
,
S.
,
2006
, “
Aerodynamic Optimization Under a Range of Operating Conditions
,”
AIAA J.
,
44
(
11
), pp.
2787
2792
.10.2514/1.23658
18.
Reuther
,
J. J.
,
Jameson
,
A.
,
Alonso
,
J. J.
,
Rimlinger
,
M. J.
, and
Saunders
,
D.
,
1999
, “
Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 1
,”
J. Aircr.
,
36
(
1
), pp.
51
60
.10.2514/2.2413
19.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2010
, “
The Weighted Sum Method for Multi-Objective Optimization: New Insights
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
853
862
.10.1007/s00158-009-0460-7
20.
Meaux
,
M.
,
Cormery
,
M.
, and
Voizard
,
G.
,
2004
, “
Viscous Aerodynamic Shape Optimization Based on the Discrete Adjoint State for 3D Industrial Configurations
,”
4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS)
, Jyväskylä, Finland, July 24–28.
21.
Cambier
,
L.
,
Gazaix
,
M.
,
Heib
,
S.
,
Plot
,
S.
,
Poinot
,
M.
,
Veuillot
,
J.-P.
,
Boussuge
,
J.-F.
, and
Montagnac
,
M.
,
2011
, “
An Overview of the Multi-Purpose elsA Flow Solver
,”
Aerosp. Lab.
,
2
, p. AL02-10.
22.
Puigt
,
G.
,
Gazaix
,
M.
,
Montagnac
,
M.
,
Le Pape
,
M.-C.
,
de la Llave Plata
,
M.
,
Marmignon
,
C.
,
Boussuge
,
J.-F.
, and
Couaillier
,
V.
,
2011
, “
Development of a New Hybrid Compressible Solver Inside the CFD elsA Software
,”
AIAA
Paper No. 2011-3379.10.2514/6.2011-3379
23.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Transport Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.1992-439
24.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
25.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
26.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts
,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
(
1
), pp.
76
84
.
27.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss–Seidel Method for the Euler and Navier–Stokes Equations
,”
AIAA J.
,
26
(
9
), pp.
1025
1026
.10.2514/3.10007
28.
Jameson
,
A.
,
1982
, “
Steady State Solutions of the Euler Equations for Transonic Flow by a Multigrid Method
,”
Transonic, Shock, and Multidimensional Flows: Advances in Scientific Computing
,
Academic
, New York, pp.
37
70
.
29.
Jameson
,
A.
,
Martinelli
,
L.
, and
Pierce
,
N. A.
,
1998
, “
Optimum Aerodynamic Design Using the Navier–Stokes Equations
,”
Theor. Comput. Fluid Dyn.
,
10
(
1
), pp.
213
237
.10.1007/s001620050060
30.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier–Stokes Equations
,”
AIAA J.
,
37
(
11
), pp.
1411
1419
.10.2514/2.640
31.
Pinel
,
X.
, and
Montagnac
,
M.
,
2013
, “
Block Krylov Methods to Solve Adjoint Problems in Aerodynamic Design Optimization
,”
AIAA J.
,
51
(
9
), pp.
2183
2191
.10.2514/1.J052113
32.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Collado
,
E.
,
2012
, “
Comparison of RANS and LES for Prediction of Wall Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.10.2514/1.B34314
33.
Trefethen
,
L. N.
,
2013
,
Approximation Theory and Approximation Practice
,
SIAM
,
Philadelphia
.
34.
Byrd
,
R.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.10.1137/0916069
You do not currently have access to this content.