In modern gas turbine engines, the blade tips and near-tip regions are exposed to high thermal loads caused by the tip leakage flow. The rotor blades are therefore carefully designed to achieve optimum work extraction at engine design conditions without failure. However, very often gas turbine engines operate outside these design conditions which might result in sudden rotor blade failure. Therefore, it is critical that the effect of such off-design turbine blade operation be understood to minimize the risk of failure and optimize rotor blade tip performance. In this study, the effect of varying the exit Mach number on the tip and near-tip heat transfer characteristics was numerically studied by solving the steady Reynolds averaged Navier Stokes (RANS) equation. The study was carried out on a highly loaded flat tip rotor blade with 1% tip gap and at exit Mach numbers of Mexit = 0.85 (Reexit = 9.75 × 105) and Mexit = 1.0 (Reexit = 1.15 × 106) with high freestream turbulence (Tu = 12%). The exit Reynolds number was based on the rotor axial chord. The numerical results provided detailed insight into the flow structure and heat transfer distribution on the tip and near-tip surfaces. On the tip surface, the heat transfer was found to generally increase with exit Mach number due to high turbulence generation in the tip gap and flow reattachment. While increase in exit Mach number generally raises he heat transfer over the whole blade surface, the increase is significantly higher on the near-tip surfaces affected by leakage vortex. Increase in exit Mach number was found to also induce strong flow relaminarization on the pressure side near-tip. On the other hand, the size of the suction surface near-tip region affected by leakage vortex was insensitive to changes in exit Mach number but significant increase in local heat transfer was noted in this region.

References

References
1.
Bunker
,
R.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
2.
Bunker
,
R.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
64
79
.10.1111/j.1749-6632.2001.tb05843.x
3.
Mayle
,
R. E.
, and
Metzger
,
D. E.
,
1982
, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Seventh International Heat Transfer Conference (IHTC)
,
Munich, Sept. 6–10
, pp.
87
92
.
4.
Key
,
N. L.
, and
Art
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach
,
128
(
2
), pp.
213
220
.10.1115/1.2162183
5.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.10.1115/1.3262162
6.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.10.1115/1.555443
7.
Azad
,
G.
,
Han
,
J. C.
, and
Teng
,
S.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.10.1115/1.1308567
8.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
9.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
(
4
), pp.
683
693
.10.1115/1.2836720
10.
El-Gabry
,
L. A.
,
2009
, “
Numerical Modeling of Heat Transfer and Pressure Losses for an Uncooled Gas Turbine Blade Tip: Effect of Tip Clearance and Tip Geometry
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
022005
.10.1115/1.4000547
11.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part I—Effect of Tip Clearance Height
,”
ASME J. Turbomach.
,
123
(
2
), pp.
314
323
.10.1115/1.1368881
12.
Nasir
,
H.
,
Ekkad
,
S.
,
Kontrovitz
,
D.
,
Bunker
,
R.
, and
Prakash
,
C.
,
2004
, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
,
126
(
2
), pp.
221
228
.10.1115/1.1731416
13.
Liu
,
J.
,
Li
,
P.
,
Zhang
,
C.
, and
An
,
B. T.
,
2013
, “
Flowfield and Heat Transfer Past an Unshrouded Gas Turbine Blade Tip With Different Shapes
,”
J. Therm. Sci.
,
22
(
2
), pp.
228
134
.10.1007/s11630-013-0603-4
14.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.10.1115/1.1626684
15.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.10.1115/1.4002424
16.
Wheeler
,
A. P. S.
, and
Sandberg
,
R. D.
,
2013
, “
Direct Numerical Simulations of a Transonic Tip Flow With Free-Stream Disturbances
,”
ASME
Paper No. TBTS2013-2037.10.1115/TBTS2013-2037
17.
Zhang
,
Q.
,
He
,
L.
, and
Rawlinson
,
A.
,
2013
, “
Effects of Inlet Turbulence and End-Wall Boundary Layer on Aero-Thermal Performance of a Transonic Turbine Blade Tip
,”
ASME
Paper No. TBTS2013-2019.10.1115/TBTS2013-2019
18.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.10.1115/1.4004845
19.
Li
,
J.
,
Sun
,
H.
,
Wang
,
J.
, and
Feng
,
Z.
,
2013
, “
Numerical Investigations on the Steady and Unsteady Leakage Flow and Heat Transfer Characteristics of a Rotor Blade Squealer Tip
,”
J. Therm. Sci.
,
20
(
4
), pp.
204
311
.10.1007/s11630-011-0474-5
20.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
(
3
), pp.
284
292
.10.1115/1.3262267
21.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part II—Source Flow Effects on Blade Suction Sides
,”
ASME J. Turbomach.
,
111
(
3
), pp.
293
300
.10.1115/1.3262267
22.
Jin
,
P.
, and
Goldstein
,
R. J.
,
2003
, “
Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces
,”
ASME J. Turbomach.
,
125
(
3
), pp.
521
528
.10.1115/1.1554410
23.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
AIAA J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.10.2514/2.6776
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence, and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.10.1115/1.2952381
26.
Anto
,
K.
,
Xue
,
S.
,
Ng
,
W. F.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2013
, “
Effects of Tip Clearance Gap and Exit Mach Number on Turbine Blade Tip and Near-Tip Heat Transfer
,”
ASME
Paper No. GT2013-94345.10.1115/GT2013-94345
27.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2008
, “
Prediction of Heat Transfer and Flow Transition on Transonic Turbine Airfoils Under High Freestream Turbulence
,”
ASME
Paper No. GT2008-50868.10.1115/GT2008-50868
28.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
272
277
.10.1115/1.555444
29.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.10.1115/1.4002949
You do not currently have access to this content.