This paper is the second part of a two-part paper reporting on the increase in efficiency of a 1.5 stage axial test rig turbine with the use of nonaxisymmetric endwalls and 3D airfoil design. Contoured endwalls were developed for the inlet guide vane separately, as well as in combination with a bowed radial profile stacking. In addition, a contour endwall was applied to the hub of the unshrouded rotor. In Part I, the design of the profiled endwalls and 3D airfoils is presented, as well as a detailed analysis of the steady and unsteady computational fluid dynamics (CFD) results. Part II reports on the experimental validation of the numerical results. A distinct increase in mechanical efficiency for both new configurations in good agreement with the numerical results is observed. Additionally, performance map measurements demonstrate that the new designs are also beneficial under off-design conditions. Five- and three-hole-probes as well as fast-response total pressure probes are used to investigate the new designs. The main effect is the homogenization of the yaw angle behind the first stator.

References

References
1.
Sieverding
,
C. H.
,
1984
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME
Paper No. 84-GT-78.
2.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines: A Review
,”
Heat Transfer Gas Turbine Syst.
,
934
(
1
), pp.
11
26
10.1111/j.1749-6632.2001.tb05839.x.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
655
.10.1115/1.2929299
4.
Rose
,
M.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
ASME
Paper No. 94-GT-249.
5.
Hartland
,
J. C.
,
Gregory-Smith
,
D.
, and
Rose
,
M.
,
1998
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
ASME
Paper No. 98-GT-525. 10.1115/98-GT-525
6.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.10.1115/1.555446
7.
Hartland
,
J.
, and
Gregory-Smith
,
D.
,
2002
, “
A Design Method for the Profiling of End Walls in Turbines
,”
ASME
Paper No. GT2002-30433. 10.1115/GT2002-30433
8.
Ingram
,
G.
,
Gregory-Smith
,
D. G.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
ASME
Paper No. GT2002-30339. 10.1115/GT2002-30339
9.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2003
, “
Experimental Quantification of the Benefits of End-Wall Profiling in a Turbine Cascade
,” 16th International Symposium on Air Breathing Engines, Cleveland, OH, Aug. 31–Sept. 5, ISABE Paper No. 2003-1101.
10.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2004
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME
Paper No. GT2004-53589. 10.1115/GT2004-53589
11.
Gregory-Smith
,
D. G.
,
Ingram
,
G.
,
Jayaraman
,
P.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2001
, “
Non-Axisymmetric Turbine Endwall Profiling
,”
Proc. IMechE, Part A
,
215
(
6
), pp.
721
734
.10.1243/0957650011539027
12.
Gregory-Smith
,
D. G.
,
Bagshaw
,
D.
,
Ingram
,
G.
, and
Stokes
,
M.
,
2008
, “
Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimise Secondary Flow
,”
ASME
Paper No. GT2008-50811.10.1115/GT2008-50811
13.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579. 10.1115/GT2007-27579
14.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2008
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2008-51311. 10.1115/GT2008-51311
15.
Poehler
,
T.
,
Gier
,
J.
, and
Jeschke
,
P.
,
2010
, “
Numerical and Experimental Analysis of the Effects of Non-Axisymmetric Contoured Stator Endwalls in an Axial Turbine
,”
ASME
Paper No. GT2010-23350. 10.1115/GT2010-23350
16.
Taremi
,
F.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2011
, “
Application of Endwall Contouring to Transonic Turbine Cascades: Experimental Measurements at Design Conditions
,”
ASME
Paper No. GT2011-46511. 10.1115/GT2011-46511
17.
Abraham
,
S.
,
Panchal
,
K.
,
Ekkad
,
S.
,
Ng
,
W.
,
Lohaus
,
A.
, and
Malandra
,
A.
,
2012
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage—Part 1: Aerodynamic Performance
,”
ASME
Paper No. GT2012-68425. 10.1115/GT2012-68425
18.
Denton
,
J. D.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173. 10.1115/GT2012-69173
19.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part 1—Turbine Design
,”
ASME
Paper No. 2001-GT-0444. 10.1115/2001-GT-0444
20.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part II—Experimental Validation
,”
ASME
Paper No. 2001-GT-0505. 10.1115/2001-GT-0505
21.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
22.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls: Part I—Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469. 10.1115/GT2008-50469
23.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls: Part II—Time-Resolved Flow Physics
,”
ASME
Paper No. GT2008-50470. 10.1115/GT2008-50470
24.
Schuepbach
,
P.
,
Rose
,
M.
,
Gier
,
J.
,
Raab
,
I.
,
Germain
,
T.
, and
Abhari
,
R.
,
2009
, “
Non-Axisymmetric End Wall Profiles Including Fillet Radii, in a 1.5 Stage Axial Flow Turbine
,”
8th European Turbomachinery Conference
, Graz, Austria, Mar. 23–27, Paper No. 159.
25.
Denton
,
J. D.
, and
Xu
,
L.
,
1999
, “
The Exploitation of 3D Flow in Turbomachinery Design
,” Turbomachinery Blade Designs Systems (VKI Lecture Series 1999-02), von Karman Institute, Rhode-St-Genese, Belgium.
26.
Harrison
,
S.
,
1992
, “
The Influence of Blade Lean on Turbine Losses
,”
ASME J. Turbomach.
,
114
(
2
), pp.
184
190
.10.1115/1.2927982
27.
Sharma
,
O. P.
,
Kopper
,
F. C.
,
Stetson
,
G. M.
,
Magge
,
S. S.
,
Price
,
F. R.
, and
Ni
,
R.
,
2003
, “
A Perspective on the Use of Physical and Numerical Experiments in the Advancement of Design Technology for Axial Flow Turbines
,” 16th International Symposium on Air Breathing Engines, Cleveland, OH, Aug. 31–Sept. 5, ISABE Paper No. 2003-1035.
28.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
,
1998
, “
Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall Contouring
,”
ASME
Paper No. 98-GT-72.
29.
Duden
,
A.
, and
Fottner
,
L.
,
1999
, “
The Secondary Flow Field of a Turbine Cascade With 3D Airfoil Design and Endwall Contouring at Off-Design Incidence
,”
ASME
Paper No. 1999-GT-211.
30.
Nagel
,
M. G.
, and
Baier
,
R. D.
,
2003
, “
Experimentally Verified Numerical Optimization of a 3D-Parametrised Turbine Vane With Non-Axisymmetric End Walls
,”
ASME
Paper No. GT2003-38624. 10.1115/GT2003-38624
31.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Stokes
,
M. R.
, and
Harvey
,
N. W.
,
2008
, “
The Design of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. IMechE, Part A
,
222
(
A1
), pp.
93
102
.10.1243/09576509JPE477
32.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M. R.
,
2008
, “
An Experimental Study of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. IMechE, Part A
,
222
(
A1
), pp.
103
110
.10.1243/09576509JPE478
33.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2014
, “
Investigation of Non-Axisymmetric Endwall Contouring and 3D Airfoil Design in a 1.5 Stage Axial Turbine: Part I—Design and Novell Numerical Analysis Method
,”
ASME
Paper No. GT2014-26784. 10.1115/GT2014-26784
34.
Restemeier
,
M.
,
Niewoehner
,
J.
,
Jeschke
,
P.
,
Guendogdu
,
Y.
, and
Engel
,
K.
,
2011
, “
Experimental and Numerical Investigation of Blade Row Spacing Effects in a 1.5 Stage Turbine Rig Under Off-Design Operating Conditions
,” 20th International Symposium on Air Breathing Engines, Gothenburg, Sept. 12–16, ISABE Paper No. 2011-1722.
35.
Halstead
,
D.
,
Wisler
,
D.
,
Okilshi
,
T.
,
Walker
,
G.
,
Hodson
,
H.
, and
Shin
,
H.-W.
,
1995
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME
Paper No. 95-GT-461.
36.
Restemeier
,
M.
,
2012
, “
Einfluss des Schaufelreihenabstandes auf Strömung und Wirkungsgrade in einer subsonischen Axialturbine
,” Ph.D. thesis, RWTH Aachen University, Aachen.
37.
Hoenen
,
H.
,
Kunte
,
R.
,
Waniczek
,
P.
, and
Jeschke
,
P.
,
2012
, “
Measuring Failures and Correction Methods for Pneumatic Multi-Hole Probes
,”
ASME
Paper No. GT2012-68113. 10.1115/GT2012-68113
38.
Gersten
,
K.
,
1957
, “
Ueber den Einfluss der Geschwindigkeitsverteilung in der Zustroemung auf die Sekundärströmung in geraden Schaufelgittern
,”
Forschung auf dem Gebiet des Ingenieurwesens
,
23
(
3
), pp.
95
101
.10.1007/BF02558877
39.
Hawthorne
,
W. R.
,
1955
, “
Rotational Flow Through Cascades—Part I: The Components of Vorticity
,”
Q. J. Mech. Appl. Math.
,
8
(
3
), pp.
266
279
.10.1093/qjmam/8.3.266
40.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1987
, “
Growth of Secondary Losses and Vorticity in an Axial Cascade
,”
ASME
Paper No. 87-GT-114.
41.
Niehuis
,
R.
,
Luecking
,
P.
, and
Stubert
,
B.
,
1990
, “
Experimental and Numerical Study on Basic Phenomena of Secondary Flows in Turbines
,”
AGARD Conference Proceedings
, Vol.
469
, pp.
5-1
5-15
.
You do not currently have access to this content.