This paper presents the results of the analysis of different 3D designs for the first stator and the rotor of a 1.5-stage turbine test rig. A tangential endwall contouring for the hub and the shroud, a bowed profile stacking, and a combination of those have been designed for the first stator. In addition, a tangential endwall contouring has been designed for the hub of the unshrouded rotor. Part I of this two-part paper deals with the design process and the numerical analysis of the results. All designs have been optimized using the stage efficiency as target function. For the design of the 3D stator vanes, the optimization led to an unexpected result: The secondary flow vortex strength increased. However, the secondary flow pattern is rearranged by the 3D-designing, leading to a smoother radial exit flow angle distribution. A subsequent reduction of the rotor losses overcompensates the higher stator losses. In order to understand how the 3D vanes affect the stator secondary flow pattern, a detailed analysis of vortex stretching and vortex dissipation is presented in this paper. With this approach, the various impacts of the 3D designs on the secondary flow vortices' strength can be quantified. In addition, the potential theory effect of the self-induced velocity is introduced here in order to explain the effects of a tangential endwall contouring on the trajectory of the pressure side leg of the horseshoe vortex (HVps). To the best of our knowledge, both approaches are new for the analysis of turbine secondary flows. The impact of the stronger but rearranged stator secondary flow on the rotor secondary loss development is analyzed by means of unsteady simulations. The results show that the rotor secondary flow can be effectively reduced through a proper stator secondary flow pattern. In Part II of this paper, the analysis of extensive experimental results validates and supplements the numerical analysis.

References

1.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
2.
Horlock
,
J. H.
,
1977
, “
Recent Developments in Secondary Flow
,” 49th Meetinig of the AGARD Propulsion and Energetics Panel: Secondary Flows in Turbomachines (AGARD-CP-214), The Hague, The Netherlands, Mar. 28–30, pp. 1/1–1/18.
3.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.10.1115/1.3230352
4.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.10.1115/1.3239704
5.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.10.1115/1.3262089
6.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
7.
Rose
,
M.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGVs of an Axial Flow Gas Turbine
,”
ASME
Paper No. 94-GT-249.
8.
Yan
,
J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P.
,
1999
, “
Secondary Flow Reduction in a Nozzle Guide Vane Cascade by Non-Axisymmetric End-Wall Profiling
,”
ASME
Paper No. 99-GT-339. 10.1115/99-GT-339
9.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.10.1115/1.555446
10.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(2), pp.
278
285
.10.1115/1.555445
11.
Gregory-Smith
,
D. G.
,
Ingram
,
G.
,
Jayaraman
,
P.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2001
, “
Non-Axisymmetric Turbine End Wall Profiling
,”
Proc. IMechE, Part A
,
215
(
6
), pp.
721
734
.10.1243/0957650011539027
12.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469. 10.1115/GT2008-50469
13.
Nagel
,
M. G.
, and
Baier
,
R.-D.
,
2003
, “
Experimentally Verified Numerical Optimisation of a 3D-Parametrised Turbine Vane With Non-Axisymmetric End Walls
,”
ASME
Paper No. GT2003-38624. 10.1115/GT2003-38624
14.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME
Paper No. GT2008-50470. 10.1115/GT2008-50470
15.
Schlegel
,
J. C.
,
Liu
,
H. C.
, and
Waterman
,
W. F.
,
1976
, “
Reduction of End-Wall Effects in a Small, Low-Aspect-Ratio Turbine by Radial Work Redistribution
,”
ASME J. Eng. Gas Turbines Power
,
98
(1), pp.
130
136
.10.1115/1.3446103
16.
Brennan
,
G.
,
Harvey
,
N.
,
Rose
,
M.
,
Fomison
,
N.
, and
Taylor
,
M.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part 1: Turbine Design
,”
ASME
Paper No. 2001-GT-0444. 10.1115/2001-GT-0444
17.
Rose
,
M.
,
Harvey
,
N.
,
Seaman
,
P.
,
Newman
,
D.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric Endwalls—Part II: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505. 10.1115/2001-GT-0505
18.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
19.
D'Ipollito
,
G.
,
Dossena
,
V.
, and
Mora
,
A.
,
2010
, “
The Influence of Blade Lean on Straight and Annular Turbine Cascade Flow Field
,”
ASME J. Turbomach.
,
133
(
1
), p.
011013
.10.1115/1.4000536
20.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
,
1994
, “
Vortex Interactions With Walls
,”
Annu. Rev. Fluid Mech.
,
26
(
1
), pp.
573
616
.10.1146/annurev.fl.26.010194.003041
21.
Kozulovic
,
D.
,
Roeber
,
T.
, and
Nuernberger
,
D.
,
2007
, “
Application of a Multimode Transition Model to Turbomachinery Flows
,”
7th European Turbomachinery Conference
, Athens, Mar. 5–9.
22.
Giles
,
M.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,” MIT Gas Turbine Laboratory, Cambridge, MA, GTL Technical Report No. 205.
23.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput J.
, 7(4), pp. 308–313.10.1093/comjnl/7.4.308
24.
Schlichting
,
H.
, and
Gersten
,
K.
,
1997
,
Grenzschicht-Theorie
,
Springer
,
Berlin
.
25.
Walraevens
,
R. E.
,
2000
, “
Experimentelle Analyse Dreidimensionaler Instationaerer Stroemungseffekte In Einer 1 1/2-Stufigen Axialturbine
,” Ph.D. thesis, Fortschrittsberichte VDI, Reihe 7, Nr. 385, VDI-Verlag, Duesseldorf.
You do not currently have access to this content.