Online line-of-sight (LOS) pyrometer is used on certain jet engines for diagnosis and control functions such as hot-blade detection, high-temperature limiting, and condition-based monitoring. Hot particulate bursts generated from jet engine combustor at certain running conditions lead to intermittent high-voltage signal outputs from the LOS pyrometer which is ultimately used by the onboard digital engine controller (DEC). To study the nature of hot particulates and enable LOS pyrometer functioning under burst conditions, a multicolor pyrometry (MCP) system was developed under DARPA funded program and tested on an aircraft jet engine. Soot particles generated as byproduct of combustion under certain conditions was identified as the root cause for the signal burst in a previous study. The apparent emissivity was then used to remove burst signals. In current study, the physics based filter with MCP algorithm using apparent emissivity was further extended to real-time engine control by removing burst signals at real time (1 MHz) and at engine DEC data rate. Simulink models are used to simulate the performances of the filter designs under engine normal and burst conditions. The results are compared with current LOS pyrometer results and show great advantage. The proposed model enables new LOS pyrometer design for improved engine control over wide range of operating conditions.

References

References
1.
Kerr
,
C. I. V.
, and
Ivey
,
P. C.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), pp.
873
881
.10.1088/0957-0233/13/6/307
2.
Kerr
,
C. I. V.
, and
Ivey
,
P. C.
,
2004
, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sens. Rev.
,
24
(
4
), pp.
378
386
.10.1108/02602280410558412
3.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
,
C.
, Jr.
,
Chance
,
K.
,
Coudert
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Hartmann
,
J.-M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennyson
,
J.
,
Tolchenov
,
R. N.
,
Toth
,
R. A.
,
Auwera
,
J. V.
,
Varanasi
,
P.
, and
Wagner
,
G.
,
2005
, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
96
(
2
), pp.
139
204
.10.1016/j.jqsrt.2004.10.008
4.
Ganguli
,
R
.,
2002
, “
Noise and Outlier Removal From Jet Engine Health Signals Using Weighted FIR Median Hybrid Filters
,”
Mech. Syst. Signal Process.
,
16
(
6
), pp.
967
978
.10.1006/mssp.2002.1477
5.
Ganguli
,
R.
,
2012
,
Gas Turbine Diagnostics: Signal Processing and Fault Isolation
,
CRC Press
,
New York
.
6.
Surender
,
V. P.
, and
Ganguli
,
R.
,
2005
, “
Adaptive Myriad Filter for Improved Gas Turbine Condition Monitoring Using Transient Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
329
339
.10.1115/1.1850491
7.
Verma
,
R.
, and
Ganguli
,
R.
,
2005
, “
Denoising Jet Engine Gas Path Measurements Using Nonlinear Filters
,”
IEEE/ASME Trans. Mechatronics
,
10
(
4
), pp.
461
464
.10.1109/TMECH.2005.852454
8.
Fu
,
T.
,
Wang
,
Z.
, and
Cheng
,
X.
,
2010
, “
Temperature Measurements of Diesel Fuel Combustion With Multicolor Pyrometry
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051602
.10.1115/1.4000467
9.
Cassady
,
L. D.
, and
Choueiri
,
E. Y.
,
2003
, “
High Accuracy Multi-Color Pyrometry for High Temperature Surfaces
,”
28th International Electric Propulsion Conference
,
Toulouse
,
France
, Mar. 17–21, IEPC Paper No. IEPC-03-79.
10.
Estevadeordal
,
J.
,
Wang
,
G.-H.
,
Nirmalan
,
N.
,
Harper
,
S. P.
,
Wang
,
A.
, and
Rigney
,
J. D.
,
2013
, “
Multicolor Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME J. Turbomach.
,
136
(
3
), p.
031004
.10.1115/1.4024678
11.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
San Diego, CA
.
12.
Mansoor
,
A. K.
,
Allemand
,
C.
, and
Eagar
,
T. W.
,
1991
, “
Noncontact Temperature Measurement. I. Interpolation Based Techniques
,”
Rev. Sci. Instrum.
,
62
(
2
), pp.
392
402
.10.1063/1.1142133
13.
Mansoor
,
A. K.
,
Allemand
,
C.
, and
Eagar
,
T. W.
,
1991
, “
Noncontact Temperature Measurement. II. Least Squares Based Techniques
,”
Rev. Sci. Instrum.
,
62
(
2
), pp.
403
409
.10.1063/1.1142134
You do not currently have access to this content.