This paper proposes a framework for fully automatic gradient-based constrained aerodynamic shape optimization in a multirow turbomachinery environment. The concept of adjoint-based gradient calculation is discussed and the development of the discrete adjoint equations for a turbomachinery Reynolds-averaged Navier–Stokes (RANS) solver, particularly the derivation of flow-consistent adjoint boundary conditions as well as the implementation of a discrete adjoint mixing-plane formulation, are described in detail. A parallelized, automatic grid perturbation scheme utilizing radial basis functions (RBFs), which is accurate and robust as well as able to handle highly resolved complex multiblock turbomachinery grid configurations, is developed and employed to calculate the gradient from the adjoint solution. The adjoint solver is validated by comparing its sensitivities with finite-difference gradients obtained from the flow solver. A sequential quadratic programming (SQP) algorithm is then utilized to determine an improved blade shape based on the gradient information from the objective functional and the constraints. The developed optimization method is used to redesign a single-stage transonic flow compressor in both inviscid and viscous flow. The design objective is to maximize the isentropic efficiency while constraining the mass flow rate and the total pressure ratio.

References

References
1.
Lions
,
J.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
,
Springer-Verlag
,
New York
.
2.
Pironneau
,
O.
,
1984
,
Optimal Shape Design for Elliptic Systems
,
Springer-Verlag
,
New York
.
3.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.10.1007/BF01061285
4.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
AIAA
Paper No. 2000-667. 10.2514/6.2000-667
5.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2001
, “
Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Optimization
,”
AIAA
Paper No. 2001-2530. 10.2514/6.2001-2530
6.
Jameson
,
A.
, and
Reuther
,
J.
,
1994
, “
Control Theory Based Airfoil Design Using the Euler Equations
,”
AIAA
Paper No. 94-4272. 10.2514/6.1994-4272
7.
Jameson
,
A.
,
1995
, “
Optimum Aerodynamic Design Using CFD and Control Theory
,”
AIAA
Paper No. 95-1729.10.2514/6.1995-1729
8.
Giles
,
M.
, and
Pierce
,
N.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow Turbul. Combust.
,
65
(3–4), pp.
393
415
.10.1023/A:1011430410075
9.
Kim
,
S.
,
Alonso
,
J.
, and
Jameson
,
A.
,
2004
, “
Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method
,”
J. Aircraft
,
41
(
5
), pp.
1082
1097
.10.2514/1.17
10.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2007
, “
Optimum Shape Design for Unsteady Flows With Time-Accurate Continuous and Discrete Adjoint Methods
,”
AIAA J.
,
45
(
7
), pp.
1478
1491
.10.2514/1.24332
11.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2006
, “
Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Non-Linear Frequency Domain Method
,”
AIAA
Paper No. 2006-3455.10.2514/6.2006-3455
12.
Wu
,
H.
,
Liu
,
F.
, and
Tasi
,
H.
,
2005
, “
Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method
,”
AIAA
Paper No. 2005-1006. 10.2514/6.2005-1006
13.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2007
, “
Total Pressure Loss Minimization in Turbomachinery Casacdes Using a New Continuous Adjoint Formulation
,”
J. Power Energy
,
221
(6), pp.
865
872
.10.1243/09576509JPE463
14.
Corral
,
R.
, and
Gisbert
,
F.
,
2008
, “
Profiled End Wall Design Using an Adjoint Navier–Stokes Solver
,”
ASME J. Turbomach.
,
130
(
2
), p.
021011
.10.1115/1.2751143
15.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011026
.10.1115/1.4001166
16.
Mousavi
,
A.
, and
Nadarajah
,
S.
,
2011
, “
Adjoint-Based Multidisciplinary Design Optimization of Cooled Gas Turbine Blades
,”
AIAA
Paper No. 2011-1131.10.2514/6.2011-1131
17.
Denton
,
J.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
18.
Frey
,
C.
,
Kersken
,
H.-K.
, and
Nürnberger
,
D.
,
2009
, “
The Discrete Adjoint of a Turbomachinery RANS Solver
,”
ASME
Paper No. GT2009-59062.10.1115/GT2009-59062
19.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p.
021011
.10.1115/1.3072498
20.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
132
(
2
), p.
021012
.10.1115/1.3103928
21.
Walther
,
B.
, and
Nadarajah
,
S.
,
2013
, “
Constrained Adjoint-Based Aerodynamic Shape Optimization of a Single Stage Transonic Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021017
.10.1115/1.4007502
22.
Marta
,
A.
,
der Weide
,
E. V.
,
Alonso
,
J.
,
Mader
,
C.
, and
Martins
,
J.
,
2007
, “
A Method for the Development of Discrete Adjoint Solvers Using Automatic Differentiation Tools
,”
Int. J. Comput. Fluid Dyn.
,
21
(9–10), pp.
307
327
.10.1080/10618560701678647
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Menter
,
F. R.
,
1982
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” NASA Ames Research Center, Moffett Field, CA, Report No. TM 103975.
25.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.10.2514/1.29373
26.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods With Runge–Kutta Time-Stepping Schemes
,”
AIAA
Paper No. 81-1259. 10.2514/6.1981-1259
27.
Chima
,
R.
,
1998
, “
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
,”
AIAA
Paper No. 98-0968.10.2514/6.1998-968
28.
Marta
,
A.
, and
Shankaran
,
S.
,
2013
, “
On the Handling of Turbulence Equations in RANS Adjoint Solvers
,”
Comput. Fluids
,
74
, pp.
102
113
.10.1016/j.compfluid.2013.01.012
29.
Walther
,
B.
,
2014
, “
Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines
,” Ph.D. thesis, Department of Mechanical Engineering, McGill University, Montreal, Canada.
30.
Wyss
,
M.
,
Chima
,
R.
, and
Tweedt
,
D.
,
1993
, “
Averaging Techniques for Steady and Unsteady Calculations of a Transonic Fan Stage
,” NASA Lewis Research Center, Cleveland, OH, Report No. TM 106231.
31.
Giles
,
M.
,
1990
, “
Nonrefelecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(12), pp.
2050
2058
.10.2514/3.10521
32.
Hicks
,
R.
, and
Henne
,
P.
,
1978
, “
Wing Design by Numerical Optimization
,”
J. Aircraft
,
15
(7), pp.
407
412
.10.2514/3.58379
33.
Jameson
,
A.
,
1990
, “
Automatic Design of Transonic Airfoils to Reduce the Shock Induced Pressure Drag
,”
31st Israel Annual Conference on Aviation and Aeronautics
, Tel Aviv, Feb. 21–22.
34.
Burgreen
,
G. W.
, and
Baysal
,
O.
,
1996
, “
Three-Dimensional Aerodynamic Shape Optimization Using Discrete Sensitivity Analysis
,”
AIAA J.
,
34
(
9
), pp.
1761
1770
.10.2514/3.13305
35.
Batina
,
J.
,
1991
, “
Unsteady Euler Algorithm With Unstructured Dynamic Mesh for Complex-Aircraft Aerodynamic Analysis
,”
AIAA J.
,
29
(
3
), pp.
327
333
.10.2514/3.10583
36.
Batina
,
J.
,
1990
, “
Unsteady Euler Flow Solutions Using Unstructured Dynamic Meshes
,”
AIAA J.
,
28
(
8
), pp.
1381
1388
.10.2514/3.25229
37.
Farhat
,
C.
,
Degand
,
C.
,
Koobus
,
B.
, and
Lesoinne
,
M.
,
1998
, “
Torsional Springs for Two-Dimensional Dynamic Unstructured Fluid Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1–4
), pp.
231
245
.10.1016/S0045-7825(98)00016-4
38.
Johnson
,
A.
, and
Tezduyar
,
T.
,
1994
, “
Mesh Update Strategies in Parallel Finite Element Computations of Flow Problems With Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
119
(
1–2
), pp.
73
94
.10.1016/0045-7825(94)00077-8
39.
Truong
,
A.
,
Oldfield
,
C.
, and
Zingg
,
D.
,
2008
, “
Mesh Movement for a Discrete-Adjoint Newton–Krylov Algorithm for Aerodynamic Optimization
,”
AIAA J.
,
46
(
7
), pp.
1965
1704
.
40.
Hicken
,
J.
, and
Zingg
,
D.
,
2010
, “
Aerodynamic Optimization Algorithm for Integrated Geometry Parametrization and Mesh Movement
,”
AIAA J.
,
48
(
2
), pp.
401
413
.10.2514/1.33836
41.
de Boer
,
A.
,
van der Schoot
,
M.
, and
Bijl
,
H.
,
2007
, “
Mesh Deformation Based on Radial Basis Function Interpolation
,”
Comput. Struct.
,
85
(11–14), pp.
784
795
.10.1016/j.compstruc.2007.01.013
42.
Rendall
,
T.
, and
Allen
,
C.
,
2010
, “
Parallel Efficient Mesh Motion Using Radial Basis Functions With Application to Multi-Bladed Rotors
,”
J. Numer. Methods Eng.
,
81
(
1
), pp.
89
105
.10.1002/nme.2678
43.
Jakobsson
,
S.
, and
Amoignon
,
O.
,
2007
, “
Mesh Deformation Using Radial Basis Functions for Gradient-Based Aerodynamic Shape Optimization
,”
Comput. Fluids
,
36
(
6
), pp.
1119
1136
.10.1016/j.compfluid.2006.11.002
44.
Poirier
,
V.
, and
Nadarajah
,
S.
,
2012
, “
Efficient RBF Deformation Within an Adjoint-Based Aerodynamic Optimization Framework
,”
AIAA
Paper No. 2012-0059.10.2514/6.2012-59
45.
Gill
,
P.
,
Murray
,
W.
, and
Saunders
,
M.
,
2006
, “User's Guide for snopt Version 7: Software for Large-Scale Nonlinear Programming,” Stanford Business Software Inc., Mountain View, CA.
46.
Gill
,
P.
,
Murray
,
W.
, and
Saunders
,
M.
,
2005
, “
snopt: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
47.
Blaha
,
C.
,
Hennecke
,
D.
,
Fritsch
,
G.
,
Höger
,
M.
, and
Beversdorff
,
M.
,
1997
, “
Laser-2-Focus Measurements in a Transonic Compressor Blisk-Rotor and Comparison With 3D Numerical Simulations
,”
13th International Symposium on Air Breathing Engines
, Chattanooga, TN, Sept. 7–12, ISABE Paper No. 97-706.
48.
Fritsch
,
G.
,
Höger
,
M.
,
Blaha
,
C.
, and
Bauer
,
D.
,
1997
, “
Viscous 3D Compressor Simulations on Parallel Architectures—Design Tool Development and Application to a Transonic Compressor Stage
,”
AIAA
Paper No. 97-2876.10.2514/6.1997-2876
49.
Höger
,
M.
,
Fritsch
,
G.
, and
Bauer
,
D.
,
1998
, “
Numerical Simulation of the Shock-Tip Leakage Vortex Interaction in a HPC Front Stage
,”
ASME
Paper No. 98-GT-261.10.1115/98-GT-261
50.
Shankaran
,
S.
,
Marta
,
A.
,
Venugopal
,
P.
,
Barr
,
B.
, and
Wang
,
Q.
,
2012
, “
Interpretation of Adjoint Solutions for Turbomachinery Flows
,”
ASME
Paper No. GT2012-69588. 10.1115/GT2012-69588
You do not currently have access to this content.