An experimental study has been performed in a transonic annular sector cascade of nozzle guide vanes (NGVs) to investigate the aerodynamic performance and the interaction between hub film cooling and mainstream flow. The focus of the study is on the endwalls, specifically the interaction between the hub film cooling and the mainstream. Carbon dioxide (CO2) has been supplied to the coolant holes to serve as tracer gas. Measurements of CO2 concentration downstream of the vane trailing edge (TE) can be used to visualize the mixing of the coolant flow with the mainstream. Flow field measurements are performed in the downstream plane with a five-hole probe to characterize the aerodynamics in the vane. Results are presented for the fully cooled and partially cooled vane (only hub cooling) configurations. Data presented at the downstream plane include concentration contour, axial vorticity, velocity vectors, and yaw and pitch angles. From these investigations, secondary flow structures such as the horseshoe vortex, passage vortex, can be identified and show the cooling flow significantly impacts the secondary flow and downstream flow field. The results suggest that there is a region on the pressure side (PS) of the vane TE where the coolant concentrations are very low suggesting that the cooling air introduced at the platform upstream of the leading edge (LE) does not reach the PS endwall, potentially creating a local hotspot.

References

References
1.
Langston
,
L. S.
,
Nice
,
L. M.
, and
Hooper
,
R. M.
,
1977
, “
Three Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(1), pp.
21
28
.10.1115/1.3446247
2.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.10.1115/1.3262163
3.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.10.1115/1.3239704
4.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
5.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
6.
Acharya
,
S.
, and
Mahmood
,
G. I.
,
2006
, “
Turbine Blade Aerodynamics
,”
The Gas Turbine Handbook
, Vol. 1.0,
National Energy Technology Laboratory (NETL)—DOE
,
Morgantown, WV
, Chap. 4.3.
7.
Denton
,
J. D.
,
1993
, “
Loss Mechanism in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
8.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Mean Temperature Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
Rotating Machinery Transport Phenomena
, J. H. Kim and W. J. Yang, eds.,
Hemisphere Publishing Corporation
,
New York
.
9.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downtream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
10.
Foster
,
N. W.
, and
Lampard
,
D.
,
1980
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Gas Turbines Power
,
102
(
3
), pp.
584
588
.10.1115/1.3230306
11.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
358
.10.1115/1.2841118
12.
Foster
,
N. W.
, and
Lampard
,
D.
,
1975
, “
Effect of Density and Velocity Ratio of Discrete Hole Film Cooling
,”
AIAA J.
,
13
(
8
), pp.
1112
1114
.10.2514/3.6960
13.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effect of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.10.1115/1.2927678
14.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Application
,”
ASME J. Turbomach.
,
111
(
2
), pp.
139
145
.10.1115/1.3262248
15.
El-Gabry
,
L.
,
Thurman
,
D.
,
Poinsatte
,
P.
, and
Heidmann
,
J.
,
2013
, “
Detailed Velocity and Turbulence Measurements in an Inclined Large-Scale Film Cooling Array
,”
ASME J. Turbomach.
,
135
(
6
), p.
061013
.10.1115/1.4023347
16.
Thurman
,
D.
,
E-Gabry
,
L.
,
Poinsatte
,
P.
, and
Heidmann
,
J.
,
2011
, “
Turbulence and Heat Transfer Measurements in an Inclined Large Scale Film Cooling Array—Part II, Temperature and Heat Transfer Measurements
,”
ASME
Paper No. GT2011-46498.10.1115/GT2011-46498
17.
Day
,
C. R. B.
,
Oldfield
,
L. G.
, and
Lock
,
G. D.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
29
(
2
), pp.
117
129
.10.1007/s003489900062
18.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
19.
Burns
,
W. K.
, and
Stollery
,
J. L.
,
1969
, “
The Influence of Foreign Gas Injection and Slot Geometry on Film Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
935
951
.10.1016/0017-9310(69)90156-2
20.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Hau
,
J. C.
,
2010
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME Turbo Expo 2010: Power for Land
, Sea, and Air,
ASME
Paper No. GT 2010-22781.
21.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
Impact of Film-Cooling Jets on Turbine Aerodynamic Losses
,”
ASME J. Turbomach.
,
122
(
3
), pp.
537
545
.10.1115/1.1303818
22.
Roux
,
J.
,
2004
, “
Experimental Investigation of Nozzle Guide Vanes in a Sector of an Annular Cascade
,” Licentiate Thesis, Department of Energy Technology, Royal Institute of Technology, Stockholm, Sweden.
23.
Putz
,
F. M.
,
2010
, “
Load, Secondary Flow, and Turbulence Measurements on Film Cooled Nozzle Guide Vanes in a Transonic Annular Sector Cascade
,” M.Sc. thesis, KTH Royal Institute of Technology, Stockholm, Sweden, EGI-2010-067 MSC EKV 806.
24.
Anderson
,
J. D.
,
2004
, “
Modern Compressible Flow With Historical Perspective
,”
3rd ed.
,
McGraw-Hill
,
New York
.
25.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
(
1
), pp.
173
183
.10.1115/1.2927981
26.
Goldstein
,
R. J.
, and
Spore
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.10.1115/1.3250586
You do not currently have access to this content.