The main aim of this paper is to study the influence of upstream reflections on flutter of a fan blade. To achieve this goal, flutter analysis of a complete fan assembly with an intake duct and the downstream outlet guide vanes (OGVs) (whole low pressure (LP) domain) is undertaken using a validated computational fluid dynamics (CFD) model. The computed results show good correlation with measured data. Due to space constraints, only upstream (intake) reflections are analyzed in this paper. It will be shown that the correct prediction of flutter boundary for a fan blade requires modeling of the intake and different intakes would produce different flutter boundaries for the same fan blade. However, the “blade only” and intake damping are independent and the total damping can be obtained from the sum of the two contributions. In order to gain further insight into the physics of the problem, the pressure waves created by blade vibration are split into an upstream and a downstream traveling wave in the intake. The splitting of the pressure wave allows one to establish a relationship between the phase and amplitude of the reflected waves and flutter stability of the blade. By using this approach, a simple reflection model can be used to model the intake effects.

References

References
1.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
2.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disc-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power
,
89
(
3
), pp.
419
426
.
3.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1982
, “
A Linearised Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid Mech.
,
149
(
1
), pp.
403
429
.10.1017/S002211208400272X
4.
Chi
,
R. M.
, and
Srinivasan
,
V.
,
1985
, “
Recent Advances in the Understanding and Prediction of Turbomachine Subsonic Stall Flutter
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
408
417
.10.1115/1.3239741
5.
Bendiksen
,
O. O.
,
1988
, “
Recent Developments in Flutter Suppression Techniques for Turbomachinery Rotors
,”
J. Propul.
,
4
(
2
), pp.
164
171
.10.2514/3.51283
6.
Crawley
,
E. F.
, and
Ducharme
,
E. H.
,
1990
, “
Parametric Trends in the Flutter of Advanced Turboprops
,”
ASME J. Turbomach.
,
112
(
4
), pp.
741
750
.10.1115/1.2927717
7.
He
,
L.
,
1994
, “
Integration of 2D Fluid-Structure Coupled System for Calculations of Turbomachinery Aerodynamic Instabilities
,”
Int. J. Comp. Fluid Dyn.
,
3
(
4
), pp.
217
231
.10.1080/10618569408904508
8.
Hall
,
K. C.
, and
Ekici
,
K.
,
2005
, “
Multistage Coupling for Unsteady Flows in Turbomachinery
,”
AIAA J.
,
43
(
3
), pp.
624
632
.10.2514/1.8520
9.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.10.1006/jfls.1996.0015
10.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Marshall
,
J. G.
, and
Imregun
,
M.
,
2001
, “
Mechanisms and Prediction Methods for Fan Blade Stall Flutter
,”
AIAA J. Propul. Power
,
17
(
5
), pp.
1100
1108
.10.2514/2.5850
11.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Breard
,
C.
, and
Imregun
,
M.
,
2002
, “
A Computational Study of Intake Duct Effects on Fan Flutter Stability
,”
AIAA J.
,
40
(
3
), pp.
408
418
.10.2514/2.1680
12.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2009
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
ASME
Paper No. GT2009-60098.10.1115/GT2009-60098
13.
Vahdati
,
M.
, and
Cumpsty
,
N. A.
,
2012
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
13th International Symposium on Unsteady Aerodynamics
, Aeroacoustics and Aeroelasticity of Turbomachines, University of Tokyo, Japan, Sept. 11–14, Paper No. ISUAAAT 13-I-5.
14.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
.10.2514/2.1062
15.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “A One-Equation Turbulence Model for Aerodynamic Flows,”
AIAA
Paper No. 92-0439.10.2514/6.92-0439
16.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
3
), pp.
349
351
.10.1115/1.1861912
17.
Moinier
,
P.
, and
Giles
,
M. B.
,
2005
, “
Eigenmode Analysis for Turbomachinery Applications
,”
AIAA J. Propul. Power
,
21
(
6
), pp.
973
978
.10.2514/1.11000
18.
Rice
,
E.
,
Heidmann
,
M.
, and
Sofrin
,
T.
,
1979
, “
Modal Propagation Angles in a Cylindrical Duct With Flow and Their Relation to Sound Radiation
,”
AIAA
Paper No. 79-0183.10.2514/6.1979-183
19.
Tyler
,
J.
, and
Sofrin
,
T.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans
.
70
, pp.
309
332
.10.4271/620532
20.
Hellmich
,
B.
, and
Seume
,
J. R.
,
2008
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
130
(
3
), p.
031003
.10.1115/1.2775487
21.
Kaji
,
S.
, and
Okazaki
,
T.
,
1970
, “
Propagation of Sound Waves Through a Blade Row I. Analysis Based on the Semi-Actuator Disk Theory
,”
J. Sound Vib.
,
11
(
3
), pp.
339
353
.10.1016/S0022-460X(70)80038-4
You do not currently have access to this content.